Structure-from-motion, multi-view stereo photogrammetry applied to line-scan sediment core images

Images of sediment cores are often acquired to preserve primary color information, before such profiles are altered by subsequent sampling and destructive analyses. In many cases, however, no post-processing of these images is undertaken to extract information, despite the fact that image processing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of paleolimnology 2021-10, Vol.66 (3), p.249-260
Hauptverfasser: Jacq, Kévin, Ployon, Estelle, Rapuc, William, Blanchet, Claire, Pignol, Cécile, Coquin, Didier, Fanget, Bernard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 3
container_start_page 249
container_title Journal of paleolimnology
container_volume 66
creator Jacq, Kévin
Ployon, Estelle
Rapuc, William
Blanchet, Claire
Pignol, Cécile
Coquin, Didier
Fanget, Bernard
description Images of sediment cores are often acquired to preserve primary color information, before such profiles are altered by subsequent sampling and destructive analyses. In many cases, however, no post-processing of these images is undertaken to extract information, despite the fact that image processing can be used to describe and measure structures within the sample. Improvements of RGB (Red/Green/Blue) cameras and image processing algorithms now enable acquisition of high-resolution, metrically calibrated pictures called ortho-images, which have great potential. The way to obtain such ortho-images is by processing several raw images. We propose a semi-automated method that uses metrically calibrated targets to create the ortho-image, using Agisoft Photoscan software and a Python script. The method was tested on sediment cores up to 1.5 m long. It was compared to an approach without markers, one that uses only image matching. The proposed method showed better resolution and less distortion (GSD: 59 µm, RMSE: 7–18 µm). Images acquired without calibrated targets can still be used, by manually positioning points that can then be metrically calibrated. This approach is very useful for smartphone images taken in the field. There are many potential applications for such images of sediment cores, for instance as metric stratigraphic logs to facilitate description of the profile by unit, to study and measure structures (e.g. laminae, instantaneous deposits), or use of image registration or data fusion to create spatial landmarks for non-destructive sensors or destructive laboratory analyses. High-resolution metrically calibrated RGB images of sediment cores are simple to acquire and can play an important role in paleoclimate and paleoenvironmental studies.
doi_str_mv 10.1007/s10933-021-00204-x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03257581v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568818135</sourcerecordid><originalsourceid>FETCH-LOGICAL-a420t-d2b4e78d7e4397918c50d38d0a383b978b6680b7b6bf91076aa47ccf968de8033</originalsourceid><addsrcrecordid>eNp9kEtL9jAQhYN8gq-XP-Aq4EowOknaJl2KeIMXXKjrkLbT10rb1CT18u-NVnT3rQbOPOfMcAg55HDKAdRZ4FBKyUBwBiAgY-9bZMVzlaSMq39kBWVaCSX0DtkN4RkASq3yFbH30c91nD2y1ruBDS52bjyhw9zHjr12-EZDRI-OTk8uuo23w4DRf1A7TX2HDY2O9t2ILNR2pAGbbsAx0tp5pN1gNxj2yXZr-4AHP3OPPF5dPlzcsPXd9e3F-ZrZTEBkjagyVLpRmMlSlVzXOTRSN2ClllWpdFUUGipVFVVbclCFtZmq67YsdIMapNwjx0vuk-3N5NNx_2Gc7czN-dp8aSBFrnLNX3lijxZ28u5lxhDNs5v9mN4zIi-05prLPFFioWrvQvDY_sZyMF-1m6V2k2o337Wb92SSiykkeNyg_4v-j-sTp3CGFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568818135</pqid></control><display><type>article</type><title>Structure-from-motion, multi-view stereo photogrammetry applied to line-scan sediment core images</title><source>SpringerLink Journals</source><creator>Jacq, Kévin ; Ployon, Estelle ; Rapuc, William ; Blanchet, Claire ; Pignol, Cécile ; Coquin, Didier ; Fanget, Bernard</creator><creatorcontrib>Jacq, Kévin ; Ployon, Estelle ; Rapuc, William ; Blanchet, Claire ; Pignol, Cécile ; Coquin, Didier ; Fanget, Bernard</creatorcontrib><description>Images of sediment cores are often acquired to preserve primary color information, before such profiles are altered by subsequent sampling and destructive analyses. In many cases, however, no post-processing of these images is undertaken to extract information, despite the fact that image processing can be used to describe and measure structures within the sample. Improvements of RGB (Red/Green/Blue) cameras and image processing algorithms now enable acquisition of high-resolution, metrically calibrated pictures called ortho-images, which have great potential. The way to obtain such ortho-images is by processing several raw images. We propose a semi-automated method that uses metrically calibrated targets to create the ortho-image, using Agisoft Photoscan software and a Python script. The method was tested on sediment cores up to 1.5 m long. It was compared to an approach without markers, one that uses only image matching. The proposed method showed better resolution and less distortion (GSD: 59 µm, RMSE: 7–18 µm). Images acquired without calibrated targets can still be used, by manually positioning points that can then be metrically calibrated. This approach is very useful for smartphone images taken in the field. There are many potential applications for such images of sediment cores, for instance as metric stratigraphic logs to facilitate description of the profile by unit, to study and measure structures (e.g. laminae, instantaneous deposits), or use of image registration or data fusion to create spatial landmarks for non-destructive sensors or destructive laboratory analyses. High-resolution metrically calibrated RGB images of sediment cores are simple to acquire and can play an important role in paleoclimate and paleoenvironmental studies.</description><identifier>ISSN: 0921-2728</identifier><identifier>EISSN: 1573-0417</identifier><identifier>DOI: 10.1007/s10933-021-00204-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Calibration ; Cameras ; Climate Change ; Color imagery ; Colour ; Cores ; Data integration ; Earth and Environmental Science ; Earth Sciences ; Engineering Sciences ; Environmental Engineering ; Environmental Sciences ; Freshwater &amp; Marine Ecology ; Geology ; High resolution ; Image acquisition ; Image processing ; Image registration ; Image resolution ; Information processing ; Laminates ; Multisensor fusion ; Original Paper ; Paleoclimate ; Paleontology ; Photogrammetry ; Physical Geography ; Post-production processing ; Programming languages ; Resolution ; Sciences of the Universe ; Sediment ; Sedimentology ; Sediments ; Signal and Image processing ; Smartphones ; Stratigraphy ; Target acquisition</subject><ispartof>Journal of paleolimnology, 2021-10, Vol.66 (3), p.249-260</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a420t-d2b4e78d7e4397918c50d38d0a383b978b6680b7b6bf91076aa47ccf968de8033</citedby><cites>FETCH-LOGICAL-a420t-d2b4e78d7e4397918c50d38d0a383b978b6680b7b6bf91076aa47ccf968de8033</cites><orcidid>0000-0002-3991-2184 ; 0000-0001-6586-3083 ; 0000-0003-4411-8898 ; 0000-0002-0693-7959 ; 0000-0001-8258-4545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10933-021-00204-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10933-021-00204-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://sde.hal.science/hal-03257581$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacq, Kévin</creatorcontrib><creatorcontrib>Ployon, Estelle</creatorcontrib><creatorcontrib>Rapuc, William</creatorcontrib><creatorcontrib>Blanchet, Claire</creatorcontrib><creatorcontrib>Pignol, Cécile</creatorcontrib><creatorcontrib>Coquin, Didier</creatorcontrib><creatorcontrib>Fanget, Bernard</creatorcontrib><title>Structure-from-motion, multi-view stereo photogrammetry applied to line-scan sediment core images</title><title>Journal of paleolimnology</title><addtitle>J Paleolimnol</addtitle><description>Images of sediment cores are often acquired to preserve primary color information, before such profiles are altered by subsequent sampling and destructive analyses. In many cases, however, no post-processing of these images is undertaken to extract information, despite the fact that image processing can be used to describe and measure structures within the sample. Improvements of RGB (Red/Green/Blue) cameras and image processing algorithms now enable acquisition of high-resolution, metrically calibrated pictures called ortho-images, which have great potential. The way to obtain such ortho-images is by processing several raw images. We propose a semi-automated method that uses metrically calibrated targets to create the ortho-image, using Agisoft Photoscan software and a Python script. The method was tested on sediment cores up to 1.5 m long. It was compared to an approach without markers, one that uses only image matching. The proposed method showed better resolution and less distortion (GSD: 59 µm, RMSE: 7–18 µm). Images acquired without calibrated targets can still be used, by manually positioning points that can then be metrically calibrated. This approach is very useful for smartphone images taken in the field. There are many potential applications for such images of sediment cores, for instance as metric stratigraphic logs to facilitate description of the profile by unit, to study and measure structures (e.g. laminae, instantaneous deposits), or use of image registration or data fusion to create spatial landmarks for non-destructive sensors or destructive laboratory analyses. High-resolution metrically calibrated RGB images of sediment cores are simple to acquire and can play an important role in paleoclimate and paleoenvironmental studies.</description><subject>Algorithms</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Climate Change</subject><subject>Color imagery</subject><subject>Colour</subject><subject>Cores</subject><subject>Data integration</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Engineering Sciences</subject><subject>Environmental Engineering</subject><subject>Environmental Sciences</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Geology</subject><subject>High resolution</subject><subject>Image acquisition</subject><subject>Image processing</subject><subject>Image registration</subject><subject>Image resolution</subject><subject>Information processing</subject><subject>Laminates</subject><subject>Multisensor fusion</subject><subject>Original Paper</subject><subject>Paleoclimate</subject><subject>Paleontology</subject><subject>Photogrammetry</subject><subject>Physical Geography</subject><subject>Post-production processing</subject><subject>Programming languages</subject><subject>Resolution</subject><subject>Sciences of the Universe</subject><subject>Sediment</subject><subject>Sedimentology</subject><subject>Sediments</subject><subject>Signal and Image processing</subject><subject>Smartphones</subject><subject>Stratigraphy</subject><subject>Target acquisition</subject><issn>0921-2728</issn><issn>1573-0417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtL9jAQhYN8gq-XP-Aq4EowOknaJl2KeIMXXKjrkLbT10rb1CT18u-NVnT3rQbOPOfMcAg55HDKAdRZ4FBKyUBwBiAgY-9bZMVzlaSMq39kBWVaCSX0DtkN4RkASq3yFbH30c91nD2y1ruBDS52bjyhw9zHjr12-EZDRI-OTk8uuo23w4DRf1A7TX2HDY2O9t2ILNR2pAGbbsAx0tp5pN1gNxj2yXZr-4AHP3OPPF5dPlzcsPXd9e3F-ZrZTEBkjagyVLpRmMlSlVzXOTRSN2ClllWpdFUUGipVFVVbclCFtZmq67YsdIMapNwjx0vuk-3N5NNx_2Gc7czN-dp8aSBFrnLNX3lijxZ28u5lxhDNs5v9mN4zIi-05prLPFFioWrvQvDY_sZyMF-1m6V2k2o337Wb92SSiykkeNyg_4v-j-sTp3CGFw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Jacq, Kévin</creator><creator>Ployon, Estelle</creator><creator>Rapuc, William</creator><creator>Blanchet, Claire</creator><creator>Pignol, Cécile</creator><creator>Coquin, Didier</creator><creator>Fanget, Bernard</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3991-2184</orcidid><orcidid>https://orcid.org/0000-0001-6586-3083</orcidid><orcidid>https://orcid.org/0000-0003-4411-8898</orcidid><orcidid>https://orcid.org/0000-0002-0693-7959</orcidid><orcidid>https://orcid.org/0000-0001-8258-4545</orcidid></search><sort><creationdate>20211001</creationdate><title>Structure-from-motion, multi-view stereo photogrammetry applied to line-scan sediment core images</title><author>Jacq, Kévin ; Ployon, Estelle ; Rapuc, William ; Blanchet, Claire ; Pignol, Cécile ; Coquin, Didier ; Fanget, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a420t-d2b4e78d7e4397918c50d38d0a383b978b6680b7b6bf91076aa47ccf968de8033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Climate Change</topic><topic>Color imagery</topic><topic>Colour</topic><topic>Cores</topic><topic>Data integration</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Engineering Sciences</topic><topic>Environmental Engineering</topic><topic>Environmental Sciences</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Geology</topic><topic>High resolution</topic><topic>Image acquisition</topic><topic>Image processing</topic><topic>Image registration</topic><topic>Image resolution</topic><topic>Information processing</topic><topic>Laminates</topic><topic>Multisensor fusion</topic><topic>Original Paper</topic><topic>Paleoclimate</topic><topic>Paleontology</topic><topic>Photogrammetry</topic><topic>Physical Geography</topic><topic>Post-production processing</topic><topic>Programming languages</topic><topic>Resolution</topic><topic>Sciences of the Universe</topic><topic>Sediment</topic><topic>Sedimentology</topic><topic>Sediments</topic><topic>Signal and Image processing</topic><topic>Smartphones</topic><topic>Stratigraphy</topic><topic>Target acquisition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacq, Kévin</creatorcontrib><creatorcontrib>Ployon, Estelle</creatorcontrib><creatorcontrib>Rapuc, William</creatorcontrib><creatorcontrib>Blanchet, Claire</creatorcontrib><creatorcontrib>Pignol, Cécile</creatorcontrib><creatorcontrib>Coquin, Didier</creatorcontrib><creatorcontrib>Fanget, Bernard</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of paleolimnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacq, Kévin</au><au>Ployon, Estelle</au><au>Rapuc, William</au><au>Blanchet, Claire</au><au>Pignol, Cécile</au><au>Coquin, Didier</au><au>Fanget, Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-from-motion, multi-view stereo photogrammetry applied to line-scan sediment core images</atitle><jtitle>Journal of paleolimnology</jtitle><stitle>J Paleolimnol</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>66</volume><issue>3</issue><spage>249</spage><epage>260</epage><pages>249-260</pages><issn>0921-2728</issn><eissn>1573-0417</eissn><abstract>Images of sediment cores are often acquired to preserve primary color information, before such profiles are altered by subsequent sampling and destructive analyses. In many cases, however, no post-processing of these images is undertaken to extract information, despite the fact that image processing can be used to describe and measure structures within the sample. Improvements of RGB (Red/Green/Blue) cameras and image processing algorithms now enable acquisition of high-resolution, metrically calibrated pictures called ortho-images, which have great potential. The way to obtain such ortho-images is by processing several raw images. We propose a semi-automated method that uses metrically calibrated targets to create the ortho-image, using Agisoft Photoscan software and a Python script. The method was tested on sediment cores up to 1.5 m long. It was compared to an approach without markers, one that uses only image matching. The proposed method showed better resolution and less distortion (GSD: 59 µm, RMSE: 7–18 µm). Images acquired without calibrated targets can still be used, by manually positioning points that can then be metrically calibrated. This approach is very useful for smartphone images taken in the field. There are many potential applications for such images of sediment cores, for instance as metric stratigraphic logs to facilitate description of the profile by unit, to study and measure structures (e.g. laminae, instantaneous deposits), or use of image registration or data fusion to create spatial landmarks for non-destructive sensors or destructive laboratory analyses. High-resolution metrically calibrated RGB images of sediment cores are simple to acquire and can play an important role in paleoclimate and paleoenvironmental studies.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10933-021-00204-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3991-2184</orcidid><orcidid>https://orcid.org/0000-0001-6586-3083</orcidid><orcidid>https://orcid.org/0000-0003-4411-8898</orcidid><orcidid>https://orcid.org/0000-0002-0693-7959</orcidid><orcidid>https://orcid.org/0000-0001-8258-4545</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-2728
ispartof Journal of paleolimnology, 2021-10, Vol.66 (3), p.249-260
issn 0921-2728
1573-0417
language eng
recordid cdi_hal_primary_oai_HAL_hal_03257581v1
source SpringerLink Journals
subjects Algorithms
Calibration
Cameras
Climate Change
Color imagery
Colour
Cores
Data integration
Earth and Environmental Science
Earth Sciences
Engineering Sciences
Environmental Engineering
Environmental Sciences
Freshwater & Marine Ecology
Geology
High resolution
Image acquisition
Image processing
Image registration
Image resolution
Information processing
Laminates
Multisensor fusion
Original Paper
Paleoclimate
Paleontology
Photogrammetry
Physical Geography
Post-production processing
Programming languages
Resolution
Sciences of the Universe
Sediment
Sedimentology
Sediments
Signal and Image processing
Smartphones
Stratigraphy
Target acquisition
title Structure-from-motion, multi-view stereo photogrammetry applied to line-scan sediment core images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-from-motion,%20multi-view%20stereo%20photogrammetry%20applied%20to%20line-scan%20sediment%20core%20images&rft.jtitle=Journal%20of%20paleolimnology&rft.au=Jacq,%20K%C3%A9vin&rft.date=2021-10-01&rft.volume=66&rft.issue=3&rft.spage=249&rft.epage=260&rft.pages=249-260&rft.issn=0921-2728&rft.eissn=1573-0417&rft_id=info:doi/10.1007/s10933-021-00204-x&rft_dat=%3Cproquest_hal_p%3E2568818135%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568818135&rft_id=info:pmid/&rfr_iscdi=true