Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology
This integrated study provides significant insight into parameters controlling the acoustic and reservoir properties of microporous limestones, improving the knowledge of the relationships among petrophysic and microstructural content. Petrophysical properties measured from laboratory and logging to...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Solid earth 2015-02, Vol.120 (2), p.790-811 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 811 |
---|---|
container_issue | 2 |
container_start_page | 790 |
container_title | Journal of geophysical research. Solid earth |
container_volume | 120 |
creator | Regnet, J. B. Robion, P. David, C. Fortin, J. Brigaud, B. Yven, B. |
description | This integrated study provides significant insight into parameters controlling the acoustic and reservoir properties of microporous limestones, improving the knowledge of the relationships among petrophysic and microstructural content. Petrophysical properties measured from laboratory and logging tools (porosity, permeability, electrical conductivity, and acoustic properties) have been coupled with thin section and scanning electron microscope observations on the EST205 borehole from the Oxfordian limestone aquifer of the eastern part of the Paris Basin. A major achievement is the establishment of the link between micrite microtexture types (particle morphology and nature of intercrystal contacts) and the physical response, introducing a new effective and interesting rock‐typing approach for microporous reservoirs. Fluid‐flow properties are enhanced by the progressive augmentation of intercrystalline microporosity and associated pore throat diameter, as the coalescence of micrite particles decreases. Concerning acoustic properties, the slow increase of P wave velocity can be seen as a reflection of crystal size and growing contact cementation leading to a more cohesive and stiffer micrite microtexture. By applying poroelasticity theory on our samples, we show that velocity dispersion can be a very useful tool for data discrimination in carbonates. This dispersion analysis highlights the presence of microcracks in the rocks, and their overall effect on acoustic and transport properties. The presence of microcracks is also confirmed with observations and permeability measurements under high confining pressure. Finally, a possible origin of high porous levels in neritic limestones is a mineralogical transformation of carbonates through freshwater‐related diagenesis during subaerial exposure time. Finally, by applying poroelasticity theory on our samples, we show that velocity dispersion can be a very useful tool for data discrimination in carbonates.
Key Points
New rock‐typing based on micrite textures is proposed for microporous carbonates
Micrite particle size and morphology affect acoustic and transport properties
Frequency dispersion analysis is efficient to improve petrophysical correlation |
doi_str_mv | 10.1002/2014JB011313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03257364v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677983567</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5068-11cfb58d6eaaf775e01d58568973fa6e9572981a05e72ba3a2642f1002c73bfe3</originalsourceid><addsrcrecordid>eNqNkU9vEzEQxVcIJKrSGx_AEheQWOo_sb3mlkaQNoooQkWVerEcZ5a63V1v7U0hfHomXYgqDghfbI9_bzTvuSheMvqOUcqPOWWTxQllTDDxpDjgTJnSCKme7s9MPC-Ocr6huCossclBsZn6uMlD8MR1a5IgQ7qPIZE-xR7SECCTWJM2eLzHhCjxLq1i5wYgKfrb_J6ctX0TvBtC7P6wAV97h3LfAMnhJzx0b2Pqr2MTv21fFM9q12Q4-r0fFl8_friYnZbL8_nZbLosnaSqKhnz9UpWawXO1VpLoGwtK6kqo0XtFBipuamYoxI0XznhuJrwepeG12JVgzgs3ox9r11j-xRal7Y2umBPp0u7q1HBpRZqcs-QfT2yaP1uA3mwbcgemsZ1gL7tLjCOsXH1H6jWpsLsNaKv_kJv4iZ1aNoyw_CzFOMUqbcjhTHnnKDeD8uo3fmxj38XcTHi30MD23-ydjH_ciKpERWqylEV8gA_9iqXbi0OqqW9_DS3n83VxeVidmWX4hcnkrRM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1911136120</pqid></control><display><type>article</type><title>Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Regnet, J. B. ; Robion, P. ; David, C. ; Fortin, J. ; Brigaud, B. ; Yven, B.</creator><creatorcontrib>Regnet, J. B. ; Robion, P. ; David, C. ; Fortin, J. ; Brigaud, B. ; Yven, B.</creatorcontrib><description>This integrated study provides significant insight into parameters controlling the acoustic and reservoir properties of microporous limestones, improving the knowledge of the relationships among petrophysic and microstructural content. Petrophysical properties measured from laboratory and logging tools (porosity, permeability, electrical conductivity, and acoustic properties) have been coupled with thin section and scanning electron microscope observations on the EST205 borehole from the Oxfordian limestone aquifer of the eastern part of the Paris Basin. A major achievement is the establishment of the link between micrite microtexture types (particle morphology and nature of intercrystal contacts) and the physical response, introducing a new effective and interesting rock‐typing approach for microporous reservoirs. Fluid‐flow properties are enhanced by the progressive augmentation of intercrystalline microporosity and associated pore throat diameter, as the coalescence of micrite particles decreases. Concerning acoustic properties, the slow increase of P wave velocity can be seen as a reflection of crystal size and growing contact cementation leading to a more cohesive and stiffer micrite microtexture. By applying poroelasticity theory on our samples, we show that velocity dispersion can be a very useful tool for data discrimination in carbonates. This dispersion analysis highlights the presence of microcracks in the rocks, and their overall effect on acoustic and transport properties. The presence of microcracks is also confirmed with observations and permeability measurements under high confining pressure. Finally, a possible origin of high porous levels in neritic limestones is a mineralogical transformation of carbonates through freshwater‐related diagenesis during subaerial exposure time. Finally, by applying poroelasticity theory on our samples, we show that velocity dispersion can be a very useful tool for data discrimination in carbonates.
Key Points
New rock‐typing based on micrite textures is proposed for microporous carbonates
Micrite particle size and morphology affect acoustic and transport properties
Frequency dispersion analysis is efficient to improve petrophysical correlation</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1002/2014JB011313</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Acoustic coupling ; Acoustic microscopy ; Acoustic properties ; Acoustics ; Aquifers ; Augmentation ; Boreholes ; carbonate ; Carbonate rocks ; Carbonates ; Cementation ; Cements ; Coalescence ; Coalescing ; Cohesion ; Confining ; Correlation ; Diagenesis ; Discrimination ; Dispersion ; Dispersions ; Earth Sciences ; Electric contacts ; Electrical conductivity ; Electrical resistivity ; Fluid flow ; Freshwater ; Genetic transformation ; Geophysics ; Inland water environment ; Limestone ; microporosity ; Microstructure ; Morphology ; Parameters ; Paris Basin ; Particle size ; Permeability ; petrophysics ; Porosity ; Pressure ; Properties ; Reflection ; Reservoirs ; Rock ; Scanning electron microscopy ; Sciences of the Universe ; Seismic velocities ; Seismic wave velocities ; Surface layer ; Texture ; Transport ; Transport properties ; Typing ; Velocity ; Wave velocity</subject><ispartof>Journal of geophysical research. Solid earth, 2015-02, Vol.120 (2), p.790-811</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright Blackwell Publishing Ltd. Feb 2015</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5068-11cfb58d6eaaf775e01d58568973fa6e9572981a05e72ba3a2642f1002c73bfe3</citedby><cites>FETCH-LOGICAL-a5068-11cfb58d6eaaf775e01d58568973fa6e9572981a05e72ba3a2642f1002c73bfe3</cites><orcidid>0000-0002-6341-3318 ; 0000-0001-6961-2177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014JB011313$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014JB011313$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03257364$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Regnet, J. B.</creatorcontrib><creatorcontrib>Robion, P.</creatorcontrib><creatorcontrib>David, C.</creatorcontrib><creatorcontrib>Fortin, J.</creatorcontrib><creatorcontrib>Brigaud, B.</creatorcontrib><creatorcontrib>Yven, B.</creatorcontrib><title>Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology</title><title>Journal of geophysical research. Solid earth</title><addtitle>J. Geophys. Res. Solid Earth</addtitle><description>This integrated study provides significant insight into parameters controlling the acoustic and reservoir properties of microporous limestones, improving the knowledge of the relationships among petrophysic and microstructural content. Petrophysical properties measured from laboratory and logging tools (porosity, permeability, electrical conductivity, and acoustic properties) have been coupled with thin section and scanning electron microscope observations on the EST205 borehole from the Oxfordian limestone aquifer of the eastern part of the Paris Basin. A major achievement is the establishment of the link between micrite microtexture types (particle morphology and nature of intercrystal contacts) and the physical response, introducing a new effective and interesting rock‐typing approach for microporous reservoirs. Fluid‐flow properties are enhanced by the progressive augmentation of intercrystalline microporosity and associated pore throat diameter, as the coalescence of micrite particles decreases. Concerning acoustic properties, the slow increase of P wave velocity can be seen as a reflection of crystal size and growing contact cementation leading to a more cohesive and stiffer micrite microtexture. By applying poroelasticity theory on our samples, we show that velocity dispersion can be a very useful tool for data discrimination in carbonates. This dispersion analysis highlights the presence of microcracks in the rocks, and their overall effect on acoustic and transport properties. The presence of microcracks is also confirmed with observations and permeability measurements under high confining pressure. Finally, a possible origin of high porous levels in neritic limestones is a mineralogical transformation of carbonates through freshwater‐related diagenesis during subaerial exposure time. Finally, by applying poroelasticity theory on our samples, we show that velocity dispersion can be a very useful tool for data discrimination in carbonates.
Key Points
New rock‐typing based on micrite textures is proposed for microporous carbonates
Micrite particle size and morphology affect acoustic and transport properties
Frequency dispersion analysis is efficient to improve petrophysical correlation</description><subject>Acoustic coupling</subject><subject>Acoustic microscopy</subject><subject>Acoustic properties</subject><subject>Acoustics</subject><subject>Aquifers</subject><subject>Augmentation</subject><subject>Boreholes</subject><subject>carbonate</subject><subject>Carbonate rocks</subject><subject>Carbonates</subject><subject>Cementation</subject><subject>Cements</subject><subject>Coalescence</subject><subject>Coalescing</subject><subject>Cohesion</subject><subject>Confining</subject><subject>Correlation</subject><subject>Diagenesis</subject><subject>Discrimination</subject><subject>Dispersion</subject><subject>Dispersions</subject><subject>Earth Sciences</subject><subject>Electric contacts</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Fluid flow</subject><subject>Freshwater</subject><subject>Genetic transformation</subject><subject>Geophysics</subject><subject>Inland water environment</subject><subject>Limestone</subject><subject>microporosity</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Parameters</subject><subject>Paris Basin</subject><subject>Particle size</subject><subject>Permeability</subject><subject>petrophysics</subject><subject>Porosity</subject><subject>Pressure</subject><subject>Properties</subject><subject>Reflection</subject><subject>Reservoirs</subject><subject>Rock</subject><subject>Scanning electron microscopy</subject><subject>Sciences of the Universe</subject><subject>Seismic velocities</subject><subject>Seismic wave velocities</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Transport</subject><subject>Transport properties</subject><subject>Typing</subject><subject>Velocity</subject><subject>Wave velocity</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU9vEzEQxVcIJKrSGx_AEheQWOo_sb3mlkaQNoooQkWVerEcZ5a63V1v7U0hfHomXYgqDghfbI9_bzTvuSheMvqOUcqPOWWTxQllTDDxpDjgTJnSCKme7s9MPC-Ocr6huCossclBsZn6uMlD8MR1a5IgQ7qPIZE-xR7SECCTWJM2eLzHhCjxLq1i5wYgKfrb_J6ctX0TvBtC7P6wAV97h3LfAMnhJzx0b2Pqr2MTv21fFM9q12Q4-r0fFl8_friYnZbL8_nZbLosnaSqKhnz9UpWawXO1VpLoGwtK6kqo0XtFBipuamYoxI0XznhuJrwepeG12JVgzgs3ox9r11j-xRal7Y2umBPp0u7q1HBpRZqcs-QfT2yaP1uA3mwbcgemsZ1gL7tLjCOsXH1H6jWpsLsNaKv_kJv4iZ1aNoyw_CzFOMUqbcjhTHnnKDeD8uo3fmxj38XcTHi30MD23-ydjH_ciKpERWqylEV8gA_9iqXbi0OqqW9_DS3n83VxeVidmWX4hcnkrRM</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Regnet, J. B.</creator><creator>Robion, P.</creator><creator>David, C.</creator><creator>Fortin, J.</creator><creator>Brigaud, B.</creator><creator>Yven, B.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>7U5</scope><scope>7QH</scope><scope>7UA</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6341-3318</orcidid><orcidid>https://orcid.org/0000-0001-6961-2177</orcidid></search><sort><creationdate>201502</creationdate><title>Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology</title><author>Regnet, J. B. ; Robion, P. ; David, C. ; Fortin, J. ; Brigaud, B. ; Yven, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5068-11cfb58d6eaaf775e01d58568973fa6e9572981a05e72ba3a2642f1002c73bfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acoustic coupling</topic><topic>Acoustic microscopy</topic><topic>Acoustic properties</topic><topic>Acoustics</topic><topic>Aquifers</topic><topic>Augmentation</topic><topic>Boreholes</topic><topic>carbonate</topic><topic>Carbonate rocks</topic><topic>Carbonates</topic><topic>Cementation</topic><topic>Cements</topic><topic>Coalescence</topic><topic>Coalescing</topic><topic>Cohesion</topic><topic>Confining</topic><topic>Correlation</topic><topic>Diagenesis</topic><topic>Discrimination</topic><topic>Dispersion</topic><topic>Dispersions</topic><topic>Earth Sciences</topic><topic>Electric contacts</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Fluid flow</topic><topic>Freshwater</topic><topic>Genetic transformation</topic><topic>Geophysics</topic><topic>Inland water environment</topic><topic>Limestone</topic><topic>microporosity</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Parameters</topic><topic>Paris Basin</topic><topic>Particle size</topic><topic>Permeability</topic><topic>petrophysics</topic><topic>Porosity</topic><topic>Pressure</topic><topic>Properties</topic><topic>Reflection</topic><topic>Reservoirs</topic><topic>Rock</topic><topic>Scanning electron microscopy</topic><topic>Sciences of the Universe</topic><topic>Seismic velocities</topic><topic>Seismic wave velocities</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Transport</topic><topic>Transport properties</topic><topic>Typing</topic><topic>Velocity</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Regnet, J. B.</creatorcontrib><creatorcontrib>Robion, P.</creatorcontrib><creatorcontrib>David, C.</creatorcontrib><creatorcontrib>Fortin, J.</creatorcontrib><creatorcontrib>Brigaud, B.</creatorcontrib><creatorcontrib>Yven, B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Regnet, J. B.</au><au>Robion, P.</au><au>David, C.</au><au>Fortin, J.</au><au>Brigaud, B.</au><au>Yven, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><addtitle>J. Geophys. Res. Solid Earth</addtitle><date>2015-02</date><risdate>2015</risdate><volume>120</volume><issue>2</issue><spage>790</spage><epage>811</epage><pages>790-811</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>This integrated study provides significant insight into parameters controlling the acoustic and reservoir properties of microporous limestones, improving the knowledge of the relationships among petrophysic and microstructural content. Petrophysical properties measured from laboratory and logging tools (porosity, permeability, electrical conductivity, and acoustic properties) have been coupled with thin section and scanning electron microscope observations on the EST205 borehole from the Oxfordian limestone aquifer of the eastern part of the Paris Basin. A major achievement is the establishment of the link between micrite microtexture types (particle morphology and nature of intercrystal contacts) and the physical response, introducing a new effective and interesting rock‐typing approach for microporous reservoirs. Fluid‐flow properties are enhanced by the progressive augmentation of intercrystalline microporosity and associated pore throat diameter, as the coalescence of micrite particles decreases. Concerning acoustic properties, the slow increase of P wave velocity can be seen as a reflection of crystal size and growing contact cementation leading to a more cohesive and stiffer micrite microtexture. By applying poroelasticity theory on our samples, we show that velocity dispersion can be a very useful tool for data discrimination in carbonates. This dispersion analysis highlights the presence of microcracks in the rocks, and their overall effect on acoustic and transport properties. The presence of microcracks is also confirmed with observations and permeability measurements under high confining pressure. Finally, a possible origin of high porous levels in neritic limestones is a mineralogical transformation of carbonates through freshwater‐related diagenesis during subaerial exposure time. Finally, by applying poroelasticity theory on our samples, we show that velocity dispersion can be a very useful tool for data discrimination in carbonates.
Key Points
New rock‐typing based on micrite textures is proposed for microporous carbonates
Micrite particle size and morphology affect acoustic and transport properties
Frequency dispersion analysis is efficient to improve petrophysical correlation</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014JB011313</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-6341-3318</orcidid><orcidid>https://orcid.org/0000-0001-6961-2177</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of geophysical research. Solid earth, 2015-02, Vol.120 (2), p.790-811 |
issn | 2169-9313 2169-9356 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03257364v1 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete |
subjects | Acoustic coupling Acoustic microscopy Acoustic properties Acoustics Aquifers Augmentation Boreholes carbonate Carbonate rocks Carbonates Cementation Cements Coalescence Coalescing Cohesion Confining Correlation Diagenesis Discrimination Dispersion Dispersions Earth Sciences Electric contacts Electrical conductivity Electrical resistivity Fluid flow Freshwater Genetic transformation Geophysics Inland water environment Limestone microporosity Microstructure Morphology Parameters Paris Basin Particle size Permeability petrophysics Porosity Pressure Properties Reflection Reservoirs Rock Scanning electron microscopy Sciences of the Universe Seismic velocities Seismic wave velocities Surface layer Texture Transport Transport properties Typing Velocity Wave velocity |
title | Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A57%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20and%20reservoir%20properties%20of%20microporous%20carbonate%20rocks:%20Implication%20of%20micrite%20particle%20size%20and%20morphology&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Regnet,%20J.%20B.&rft.date=2015-02&rft.volume=120&rft.issue=2&rft.spage=790&rft.epage=811&rft.pages=790-811&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1002/2014JB011313&rft_dat=%3Cproquest_hal_p%3E1677983567%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1911136120&rft_id=info:pmid/&rfr_iscdi=true |