Optimizing imputation of marker data from genotyping-by-sequencing (GBS) for genomic selection in non-model species: Rubber tree (Hevea brasiliensis) as a case study

Genotyping-by-sequencing (GBS) provides the marker density required for genomic predictions (GP). However, GBS gives a high proportion of missing SNP data which, for species without a chromosome-level genome assembly, must be imputed without knowing the SNP physical positions. Here, we compared GP a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genomics (San Diego, Calif.) Calif.), 2021-03, Vol.113 (2), p.655-668
Hauptverfasser: Munyengwa, Norman, Le Guen, Vincent, Bille, Hermine Ngalle, Souza, Livia M., Clément-Demange, André, Mournet, Pierre, Masson, Aurélien, Soumahoro, Mouman, Kouassi, Daouda, Cros, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 668
container_issue 2
container_start_page 655
container_title Genomics (San Diego, Calif.)
container_volume 113
creator Munyengwa, Norman
Le Guen, Vincent
Bille, Hermine Ngalle
Souza, Livia M.
Clément-Demange, André
Mournet, Pierre
Masson, Aurélien
Soumahoro, Mouman
Kouassi, Daouda
Cros, David
description Genotyping-by-sequencing (GBS) provides the marker density required for genomic predictions (GP). However, GBS gives a high proportion of missing SNP data which, for species without a chromosome-level genome assembly, must be imputed without knowing the SNP physical positions. Here, we compared GP accuracy with seven map-independent and two map-dependent imputation approaches, and when using all SNPs against the subset of genetically mapped SNPs. We used two rubber tree (Hevea brasiliensis) datasets with three traits. The results showed that the best imputation approaches were LinkImputeR, Beagle and FImpute. Using the genetically mapped SNPs increased GP accuracy by 4.3%. Using LinkImputeR on all the markers allowed avoiding genetic mapping, with a slight decrease in GP accuracy. LinkImputeR gave the highest level of correctly imputed genotypes and its performances were further improved by its ability to define a subset of SNPs imputed optimally. These results will contribute to the efficient implementation of genomic selection with GBS. For Hevea, GBS is promising for rubber yield improvement, with GP accuracies reaching 0.52. •Beagle, LinkImputeR and FImpute are efficient to impute sporadic missing GBS data•Genomic selection accuracy can be increased by using SNPs with known genetic positions•GBS is efficient for the implementation of genomic selection for rubber yield in hevea
doi_str_mv 10.1016/j.ygeno.2021.01.012
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03254729v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888754321000380</els_id><sourcerecordid>2483813666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-a29fe3dea0089b25a820d22024d2e248b5e27f038a7ea480b2b861fceaf37c4b3</originalsourceid><addsrcrecordid>eNp9kdFq2zAYhcXYWNNuTzAYukwunMmSbCuDXXSlbQaBQrtdC0n-3SmzJU-yA9777D0rJ10vBz8IxHfOgXMQ-pCTdU7y8tN-PT2C82tKaL4m89FXaJETsclEycvXaEGEEFlVcHaGzmPcE0I2TNC36IyxggjO2QL9vesH29k_1j1i2_XjoAbrHfYN7lT4BQHXalC4Cb7Dc9gw9YnM9JRF-D2CM7Nuefv1YYUbH45IZw2O0II5GlmHnXdZ52tocezBWIif8f2odfIeAgBebuEACuugom0tuGjjCquIFTYqAo7DWE_v0JtGtRHeP78X6MfN9ferbba7u_12dbnLDGdiyBTdNMBqUCSVoGmhBCU1Tf3wmgLlQhdAq4YwoSpQXBBNtSjzxoBqWGW4ZhdodfL9qVrZB5s6mKRXVm4vd3L-I4wWvKKbQ57Y5Yntg09VxEF2NhpoW-XAj1GmPCZyVpZlQtkJNcHHGKB58c6JnLeUe3ncUs5bSjIfTaqPzwGj7qB-0fwbLwFfTgCkSg4WgoypXmegtiHVL2tv_xvwBFm3srU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483813666</pqid></control><display><type>article</type><title>Optimizing imputation of marker data from genotyping-by-sequencing (GBS) for genomic selection in non-model species: Rubber tree (Hevea brasiliensis) as a case study</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Munyengwa, Norman ; Le Guen, Vincent ; Bille, Hermine Ngalle ; Souza, Livia M. ; Clément-Demange, André ; Mournet, Pierre ; Masson, Aurélien ; Soumahoro, Mouman ; Kouassi, Daouda ; Cros, David</creator><creatorcontrib>Munyengwa, Norman ; Le Guen, Vincent ; Bille, Hermine Ngalle ; Souza, Livia M. ; Clément-Demange, André ; Mournet, Pierre ; Masson, Aurélien ; Soumahoro, Mouman ; Kouassi, Daouda ; Cros, David</creatorcontrib><description>Genotyping-by-sequencing (GBS) provides the marker density required for genomic predictions (GP). However, GBS gives a high proportion of missing SNP data which, for species without a chromosome-level genome assembly, must be imputed without knowing the SNP physical positions. Here, we compared GP accuracy with seven map-independent and two map-dependent imputation approaches, and when using all SNPs against the subset of genetically mapped SNPs. We used two rubber tree (Hevea brasiliensis) datasets with three traits. The results showed that the best imputation approaches were LinkImputeR, Beagle and FImpute. Using the genetically mapped SNPs increased GP accuracy by 4.3%. Using LinkImputeR on all the markers allowed avoiding genetic mapping, with a slight decrease in GP accuracy. LinkImputeR gave the highest level of correctly imputed genotypes and its performances were further improved by its ability to define a subset of SNPs imputed optimally. These results will contribute to the efficient implementation of genomic selection with GBS. For Hevea, GBS is promising for rubber yield improvement, with GP accuracies reaching 0.52. •Beagle, LinkImputeR and FImpute are efficient to impute sporadic missing GBS data•Genomic selection accuracy can be increased by using SNPs with known genetic positions•GBS is efficient for the implementation of genomic selection for rubber yield in hevea</description><identifier>ISSN: 0888-7543</identifier><identifier>EISSN: 1089-8646</identifier><identifier>DOI: 10.1016/j.ygeno.2021.01.012</identifier><identifier>PMID: 33508443</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biotechnology ; Clonal breeding ; Genetic Markers ; Genomic predictions ; Genotyping Techniques - methods ; Genotyping-by-sequencing ; Hevea - genetics ; Hevea brasiliensis ; Life Sciences ; Plant Breeding - methods ; Polymorphism, Single Nucleotide ; Sequence Analysis, DNA - methods ; Single nucleotide polymorphisms</subject><ispartof>Genomics (San Diego, Calif.), 2021-03, Vol.113 (2), p.655-668</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-a29fe3dea0089b25a820d22024d2e248b5e27f038a7ea480b2b861fceaf37c4b3</citedby><cites>FETCH-LOGICAL-c438t-a29fe3dea0089b25a820d22024d2e248b5e27f038a7ea480b2b861fceaf37c4b3</cites><orcidid>0000-0001-8011-8647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ygeno.2021.01.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33508443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-03254729$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Munyengwa, Norman</creatorcontrib><creatorcontrib>Le Guen, Vincent</creatorcontrib><creatorcontrib>Bille, Hermine Ngalle</creatorcontrib><creatorcontrib>Souza, Livia M.</creatorcontrib><creatorcontrib>Clément-Demange, André</creatorcontrib><creatorcontrib>Mournet, Pierre</creatorcontrib><creatorcontrib>Masson, Aurélien</creatorcontrib><creatorcontrib>Soumahoro, Mouman</creatorcontrib><creatorcontrib>Kouassi, Daouda</creatorcontrib><creatorcontrib>Cros, David</creatorcontrib><title>Optimizing imputation of marker data from genotyping-by-sequencing (GBS) for genomic selection in non-model species: Rubber tree (Hevea brasiliensis) as a case study</title><title>Genomics (San Diego, Calif.)</title><addtitle>Genomics</addtitle><description>Genotyping-by-sequencing (GBS) provides the marker density required for genomic predictions (GP). However, GBS gives a high proportion of missing SNP data which, for species without a chromosome-level genome assembly, must be imputed without knowing the SNP physical positions. Here, we compared GP accuracy with seven map-independent and two map-dependent imputation approaches, and when using all SNPs against the subset of genetically mapped SNPs. We used two rubber tree (Hevea brasiliensis) datasets with three traits. The results showed that the best imputation approaches were LinkImputeR, Beagle and FImpute. Using the genetically mapped SNPs increased GP accuracy by 4.3%. Using LinkImputeR on all the markers allowed avoiding genetic mapping, with a slight decrease in GP accuracy. LinkImputeR gave the highest level of correctly imputed genotypes and its performances were further improved by its ability to define a subset of SNPs imputed optimally. These results will contribute to the efficient implementation of genomic selection with GBS. For Hevea, GBS is promising for rubber yield improvement, with GP accuracies reaching 0.52. •Beagle, LinkImputeR and FImpute are efficient to impute sporadic missing GBS data•Genomic selection accuracy can be increased by using SNPs with known genetic positions•GBS is efficient for the implementation of genomic selection for rubber yield in hevea</description><subject>Biotechnology</subject><subject>Clonal breeding</subject><subject>Genetic Markers</subject><subject>Genomic predictions</subject><subject>Genotyping Techniques - methods</subject><subject>Genotyping-by-sequencing</subject><subject>Hevea - genetics</subject><subject>Hevea brasiliensis</subject><subject>Life Sciences</subject><subject>Plant Breeding - methods</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Single nucleotide polymorphisms</subject><issn>0888-7543</issn><issn>1089-8646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kdFq2zAYhcXYWNNuTzAYukwunMmSbCuDXXSlbQaBQrtdC0n-3SmzJU-yA9777D0rJ10vBz8IxHfOgXMQ-pCTdU7y8tN-PT2C82tKaL4m89FXaJETsclEycvXaEGEEFlVcHaGzmPcE0I2TNC36IyxggjO2QL9vesH29k_1j1i2_XjoAbrHfYN7lT4BQHXalC4Cb7Dc9gw9YnM9JRF-D2CM7Nuefv1YYUbH45IZw2O0II5GlmHnXdZ52tocezBWIif8f2odfIeAgBebuEACuugom0tuGjjCquIFTYqAo7DWE_v0JtGtRHeP78X6MfN9ferbba7u_12dbnLDGdiyBTdNMBqUCSVoGmhBCU1Tf3wmgLlQhdAq4YwoSpQXBBNtSjzxoBqWGW4ZhdodfL9qVrZB5s6mKRXVm4vd3L-I4wWvKKbQ57Y5Yntg09VxEF2NhpoW-XAj1GmPCZyVpZlQtkJNcHHGKB58c6JnLeUe3ncUs5bSjIfTaqPzwGj7qB-0fwbLwFfTgCkSg4WgoypXmegtiHVL2tv_xvwBFm3srU</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Munyengwa, Norman</creator><creator>Le Guen, Vincent</creator><creator>Bille, Hermine Ngalle</creator><creator>Souza, Livia M.</creator><creator>Clément-Demange, André</creator><creator>Mournet, Pierre</creator><creator>Masson, Aurélien</creator><creator>Soumahoro, Mouman</creator><creator>Kouassi, Daouda</creator><creator>Cros, David</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8011-8647</orcidid></search><sort><creationdate>202103</creationdate><title>Optimizing imputation of marker data from genotyping-by-sequencing (GBS) for genomic selection in non-model species: Rubber tree (Hevea brasiliensis) as a case study</title><author>Munyengwa, Norman ; Le Guen, Vincent ; Bille, Hermine Ngalle ; Souza, Livia M. ; Clément-Demange, André ; Mournet, Pierre ; Masson, Aurélien ; Soumahoro, Mouman ; Kouassi, Daouda ; Cros, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-a29fe3dea0089b25a820d22024d2e248b5e27f038a7ea480b2b861fceaf37c4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biotechnology</topic><topic>Clonal breeding</topic><topic>Genetic Markers</topic><topic>Genomic predictions</topic><topic>Genotyping Techniques - methods</topic><topic>Genotyping-by-sequencing</topic><topic>Hevea - genetics</topic><topic>Hevea brasiliensis</topic><topic>Life Sciences</topic><topic>Plant Breeding - methods</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Single nucleotide polymorphisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munyengwa, Norman</creatorcontrib><creatorcontrib>Le Guen, Vincent</creatorcontrib><creatorcontrib>Bille, Hermine Ngalle</creatorcontrib><creatorcontrib>Souza, Livia M.</creatorcontrib><creatorcontrib>Clément-Demange, André</creatorcontrib><creatorcontrib>Mournet, Pierre</creatorcontrib><creatorcontrib>Masson, Aurélien</creatorcontrib><creatorcontrib>Soumahoro, Mouman</creatorcontrib><creatorcontrib>Kouassi, Daouda</creatorcontrib><creatorcontrib>Cros, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Genomics (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munyengwa, Norman</au><au>Le Guen, Vincent</au><au>Bille, Hermine Ngalle</au><au>Souza, Livia M.</au><au>Clément-Demange, André</au><au>Mournet, Pierre</au><au>Masson, Aurélien</au><au>Soumahoro, Mouman</au><au>Kouassi, Daouda</au><au>Cros, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing imputation of marker data from genotyping-by-sequencing (GBS) for genomic selection in non-model species: Rubber tree (Hevea brasiliensis) as a case study</atitle><jtitle>Genomics (San Diego, Calif.)</jtitle><addtitle>Genomics</addtitle><date>2021-03</date><risdate>2021</risdate><volume>113</volume><issue>2</issue><spage>655</spage><epage>668</epage><pages>655-668</pages><issn>0888-7543</issn><eissn>1089-8646</eissn><abstract>Genotyping-by-sequencing (GBS) provides the marker density required for genomic predictions (GP). However, GBS gives a high proportion of missing SNP data which, for species without a chromosome-level genome assembly, must be imputed without knowing the SNP physical positions. Here, we compared GP accuracy with seven map-independent and two map-dependent imputation approaches, and when using all SNPs against the subset of genetically mapped SNPs. We used two rubber tree (Hevea brasiliensis) datasets with three traits. The results showed that the best imputation approaches were LinkImputeR, Beagle and FImpute. Using the genetically mapped SNPs increased GP accuracy by 4.3%. Using LinkImputeR on all the markers allowed avoiding genetic mapping, with a slight decrease in GP accuracy. LinkImputeR gave the highest level of correctly imputed genotypes and its performances were further improved by its ability to define a subset of SNPs imputed optimally. These results will contribute to the efficient implementation of genomic selection with GBS. For Hevea, GBS is promising for rubber yield improvement, with GP accuracies reaching 0.52. •Beagle, LinkImputeR and FImpute are efficient to impute sporadic missing GBS data•Genomic selection accuracy can be increased by using SNPs with known genetic positions•GBS is efficient for the implementation of genomic selection for rubber yield in hevea</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33508443</pmid><doi>10.1016/j.ygeno.2021.01.012</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8011-8647</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-7543
ispartof Genomics (San Diego, Calif.), 2021-03, Vol.113 (2), p.655-668
issn 0888-7543
1089-8646
language eng
recordid cdi_hal_primary_oai_HAL_hal_03254729v1
source MEDLINE; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Biotechnology
Clonal breeding
Genetic Markers
Genomic predictions
Genotyping Techniques - methods
Genotyping-by-sequencing
Hevea - genetics
Hevea brasiliensis
Life Sciences
Plant Breeding - methods
Polymorphism, Single Nucleotide
Sequence Analysis, DNA - methods
Single nucleotide polymorphisms
title Optimizing imputation of marker data from genotyping-by-sequencing (GBS) for genomic selection in non-model species: Rubber tree (Hevea brasiliensis) as a case study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20imputation%20of%20marker%20data%20from%20genotyping-by-sequencing%20(GBS)%20for%20genomic%20selection%20in%20non-model%20species:%20Rubber%20tree%20(Hevea%20brasiliensis)%20as%20a%20case%20study&rft.jtitle=Genomics%20(San%20Diego,%20Calif.)&rft.au=Munyengwa,%20Norman&rft.date=2021-03&rft.volume=113&rft.issue=2&rft.spage=655&rft.epage=668&rft.pages=655-668&rft.issn=0888-7543&rft.eissn=1089-8646&rft_id=info:doi/10.1016/j.ygeno.2021.01.012&rft_dat=%3Cproquest_hal_p%3E2483813666%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483813666&rft_id=info:pmid/33508443&rft_els_id=S0888754321000380&rfr_iscdi=true