Evolution of life cycles and reproductive traits: Insights from the brown algae

A vast diversity of types of life cycles exists in nature, and several theories have been advanced to explain how this diversity has evolved and how each type of life cycle is retained over evolutionary time. Here, we exploited the diversity of life cycles and reproductive traits of the brown algae...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evolutionary biology 2021-07, Vol.34 (7), p.992-1009
Hauptverfasser: Heesch, Svenja, Serrano‐Serrano, Martha, Barrera‐Redondo, Josué, Luthringer, Rémy, Peters, Akira F., Destombe, Christophe, Cock, J. Mark, Valero, Myriam, Roze, Denis, Salamin, Nicolas, Coelho, Susana M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1009
container_issue 7
container_start_page 992
container_title Journal of evolutionary biology
container_volume 34
creator Heesch, Svenja
Serrano‐Serrano, Martha
Barrera‐Redondo, Josué
Luthringer, Rémy
Peters, Akira F.
Destombe, Christophe
Cock, J. Mark
Valero, Myriam
Roze, Denis
Salamin, Nicolas
Coelho, Susana M.
description A vast diversity of types of life cycles exists in nature, and several theories have been advanced to explain how this diversity has evolved and how each type of life cycle is retained over evolutionary time. Here, we exploited the diversity of life cycles and reproductive traits of the brown algae (Phaeophyceae) to test several hypotheses on the evolution of life cycles. We investigated the evolutionary dynamics of four life‐history traits: life cycle, sexual system, level of gamete dimorphism and gamete parthenogenetic capacity. We assigned states to up to 77 representative species of the taxonomic diversity of the brown algal group, in a multi‐gene phylogeny. We used maximum likelihood and Bayesian analyses of correlated evolution, while taking the phylogeny into account, to test for correlations between traits and to investigate the chronological sequence of trait acquisition. Our analyses are consistent with the prediction that diploid growth evolves when sexual reproduction is preferred over asexual reproduction, possibly because it allows the complementation of deleterious mutations. We also found that haploid sex determination is ancestral in relation to diploid sex determination. However, our results could not address whether increased zygotic and diploid growth are associated with increased sexual dimorphism. Our analyses suggest that in the brown algae, isogamous species evolved from anisogamous ancestors, contrary to the commonly reported pattern where evolution proceeds from isogamy to anisogamy. The brown algae are a eukaryotic lineage that evolved complex life cycles independently of plants and animals, with several instances of haploid‐dominant, diploid‐dominant and equally dominant life cycles. We reconstructed the history of life cycle evolution throughout the brown algae alongside other reproductive traits, such as the sex‐determination system, the gamete sizes and the ability to undergo parthenogenesis. We also performed correlation analyses between the evolutionary transitions of these traits to test several long‐standing hypotheses concerning the evolution of life cycles in eukaryotes.
doi_str_mv 10.1111/jeb.13880
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03254135v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2538047992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4220-680b03a8e2e1c3074f9baf156cd01426a1ce6f37bfca1ea445bc2184cbeef51f3</originalsourceid><addsrcrecordid>eNp1kU9vEzEQxS0EoqVw4AsgS1zgkHbGfza73Noq0KJIvYDEzfI648aRsy72bqp8e1xSioTEXGY0-unNPD3G3iKcYq2zDfWnKNsWnrFjVAJmHQI-rzMgzKDBH0fsVSkbAGyU1i_ZkVTQNY2GY3az2KU4jSENPHkegyfu9i5S4XZY8Ux3Oa0mN4Yd8THbMJZP_Hoo4XY9Fu5z2vJxTbzP6X7gNt5aes1eeBsLvXnsJ-z758W3y6vZ8ubL9eX5cuaUqA82LfQgbUuC0EmYK9_11qNu3Aqqg8aio8bLee-dRbJK6d4JbJXribxGL0_Yx4Pu2kZzl8PW5r1JNpir86V52IEUWqHUO6zshwNbzfycqIxmG4qjGO1AaSpGaNmCmnedqOj7f9BNmvJQnVRKdR1qIeTf4y6nUjL5pw8QzEMipiZifidS2XePilO_pdUT-SeCCpwdgPsQaf9_JfN1cXGQ_AXP6pNl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549915223</pqid></control><display><type>article</type><title>Evolution of life cycles and reproductive traits: Insights from the brown algae</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Heesch, Svenja ; Serrano‐Serrano, Martha ; Barrera‐Redondo, Josué ; Luthringer, Rémy ; Peters, Akira F. ; Destombe, Christophe ; Cock, J. Mark ; Valero, Myriam ; Roze, Denis ; Salamin, Nicolas ; Coelho, Susana M.</creator><creatorcontrib>Heesch, Svenja ; Serrano‐Serrano, Martha ; Barrera‐Redondo, Josué ; Luthringer, Rémy ; Peters, Akira F. ; Destombe, Christophe ; Cock, J. Mark ; Valero, Myriam ; Roze, Denis ; Salamin, Nicolas ; Coelho, Susana M.</creatorcontrib><description>A vast diversity of types of life cycles exists in nature, and several theories have been advanced to explain how this diversity has evolved and how each type of life cycle is retained over evolutionary time. Here, we exploited the diversity of life cycles and reproductive traits of the brown algae (Phaeophyceae) to test several hypotheses on the evolution of life cycles. We investigated the evolutionary dynamics of four life‐history traits: life cycle, sexual system, level of gamete dimorphism and gamete parthenogenetic capacity. We assigned states to up to 77 representative species of the taxonomic diversity of the brown algal group, in a multi‐gene phylogeny. We used maximum likelihood and Bayesian analyses of correlated evolution, while taking the phylogeny into account, to test for correlations between traits and to investigate the chronological sequence of trait acquisition. Our analyses are consistent with the prediction that diploid growth evolves when sexual reproduction is preferred over asexual reproduction, possibly because it allows the complementation of deleterious mutations. We also found that haploid sex determination is ancestral in relation to diploid sex determination. However, our results could not address whether increased zygotic and diploid growth are associated with increased sexual dimorphism. Our analyses suggest that in the brown algae, isogamous species evolved from anisogamous ancestors, contrary to the commonly reported pattern where evolution proceeds from isogamy to anisogamy. The brown algae are a eukaryotic lineage that evolved complex life cycles independently of plants and animals, with several instances of haploid‐dominant, diploid‐dominant and equally dominant life cycles. We reconstructed the history of life cycle evolution throughout the brown algae alongside other reproductive traits, such as the sex‐determination system, the gamete sizes and the ability to undergo parthenogenesis. We also performed correlation analyses between the evolutionary transitions of these traits to test several long‐standing hypotheses concerning the evolution of life cycles in eukaryotes.</description><identifier>ISSN: 1010-061X</identifier><identifier>EISSN: 1420-9101</identifier><identifier>DOI: 10.1111/jeb.13880</identifier><identifier>PMID: 34096650</identifier><language>eng</language><publisher>Switzerland: Blackwell Publishing Ltd</publisher><subject>Algae ; Animals ; Asexual reproduction ; Bayes Theorem ; Bayesian analysis ; Biological Evolution ; Complementation ; Diploids ; Environmental Sciences ; Evolution ; gamete size ; Life Cycle Stages ; Life cycles ; Mutation ; parthenogenesis ; Phaeophyceae ; Phaeophyceae - genetics ; Phylogeny ; ploidy ; Reproduction ; Reproduction (biology) ; Sex determination ; Sexual dimorphism ; Sexual reproduction ; Species diversity</subject><ispartof>Journal of evolutionary biology, 2021-07, Vol.34 (7), p.992-1009</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd on behalf of European Society for Evolutionary Biology.</rights><rights>2021 The Authors. Journal of Evolutionary Biology published by John Wiley &amp; Sons Ltd on behalf of European Society for Evolutionary Biology.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4220-680b03a8e2e1c3074f9baf156cd01426a1ce6f37bfca1ea445bc2184cbeef51f3</citedby><cites>FETCH-LOGICAL-c4220-680b03a8e2e1c3074f9baf156cd01426a1ce6f37bfca1ea445bc2184cbeef51f3</cites><orcidid>0000-0002-2819-1238 ; 0000-0003-3313-725X ; 0000-0001-5656-9659 ; 0000-0002-9000-1423 ; 0000-0003-3545-3504 ; 0000-0002-9171-2550 ; 0000-0002-2650-0383 ; 0000-0002-4531-0921 ; 0000-0002-3963-4954 ; 0000-0003-4053-3840 ; 0000-0001-5332-199X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjeb.13880$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjeb.13880$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34096650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03254135$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Heesch, Svenja</creatorcontrib><creatorcontrib>Serrano‐Serrano, Martha</creatorcontrib><creatorcontrib>Barrera‐Redondo, Josué</creatorcontrib><creatorcontrib>Luthringer, Rémy</creatorcontrib><creatorcontrib>Peters, Akira F.</creatorcontrib><creatorcontrib>Destombe, Christophe</creatorcontrib><creatorcontrib>Cock, J. Mark</creatorcontrib><creatorcontrib>Valero, Myriam</creatorcontrib><creatorcontrib>Roze, Denis</creatorcontrib><creatorcontrib>Salamin, Nicolas</creatorcontrib><creatorcontrib>Coelho, Susana M.</creatorcontrib><title>Evolution of life cycles and reproductive traits: Insights from the brown algae</title><title>Journal of evolutionary biology</title><addtitle>J Evol Biol</addtitle><description>A vast diversity of types of life cycles exists in nature, and several theories have been advanced to explain how this diversity has evolved and how each type of life cycle is retained over evolutionary time. Here, we exploited the diversity of life cycles and reproductive traits of the brown algae (Phaeophyceae) to test several hypotheses on the evolution of life cycles. We investigated the evolutionary dynamics of four life‐history traits: life cycle, sexual system, level of gamete dimorphism and gamete parthenogenetic capacity. We assigned states to up to 77 representative species of the taxonomic diversity of the brown algal group, in a multi‐gene phylogeny. We used maximum likelihood and Bayesian analyses of correlated evolution, while taking the phylogeny into account, to test for correlations between traits and to investigate the chronological sequence of trait acquisition. Our analyses are consistent with the prediction that diploid growth evolves when sexual reproduction is preferred over asexual reproduction, possibly because it allows the complementation of deleterious mutations. We also found that haploid sex determination is ancestral in relation to diploid sex determination. However, our results could not address whether increased zygotic and diploid growth are associated with increased sexual dimorphism. Our analyses suggest that in the brown algae, isogamous species evolved from anisogamous ancestors, contrary to the commonly reported pattern where evolution proceeds from isogamy to anisogamy. The brown algae are a eukaryotic lineage that evolved complex life cycles independently of plants and animals, with several instances of haploid‐dominant, diploid‐dominant and equally dominant life cycles. We reconstructed the history of life cycle evolution throughout the brown algae alongside other reproductive traits, such as the sex‐determination system, the gamete sizes and the ability to undergo parthenogenesis. We also performed correlation analyses between the evolutionary transitions of these traits to test several long‐standing hypotheses concerning the evolution of life cycles in eukaryotes.</description><subject>Algae</subject><subject>Animals</subject><subject>Asexual reproduction</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biological Evolution</subject><subject>Complementation</subject><subject>Diploids</subject><subject>Environmental Sciences</subject><subject>Evolution</subject><subject>gamete size</subject><subject>Life Cycle Stages</subject><subject>Life cycles</subject><subject>Mutation</subject><subject>parthenogenesis</subject><subject>Phaeophyceae</subject><subject>Phaeophyceae - genetics</subject><subject>Phylogeny</subject><subject>ploidy</subject><subject>Reproduction</subject><subject>Reproduction (biology)</subject><subject>Sex determination</subject><subject>Sexual dimorphism</subject><subject>Sexual reproduction</subject><subject>Species diversity</subject><issn>1010-061X</issn><issn>1420-9101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kU9vEzEQxS0EoqVw4AsgS1zgkHbGfza73Noq0KJIvYDEzfI648aRsy72bqp8e1xSioTEXGY0-unNPD3G3iKcYq2zDfWnKNsWnrFjVAJmHQI-rzMgzKDBH0fsVSkbAGyU1i_ZkVTQNY2GY3az2KU4jSENPHkegyfu9i5S4XZY8Ux3Oa0mN4Yd8THbMJZP_Hoo4XY9Fu5z2vJxTbzP6X7gNt5aes1eeBsLvXnsJ-z758W3y6vZ8ubL9eX5cuaUqA82LfQgbUuC0EmYK9_11qNu3Aqqg8aio8bLee-dRbJK6d4JbJXribxGL0_Yx4Pu2kZzl8PW5r1JNpir86V52IEUWqHUO6zshwNbzfycqIxmG4qjGO1AaSpGaNmCmnedqOj7f9BNmvJQnVRKdR1qIeTf4y6nUjL5pw8QzEMipiZifidS2XePilO_pdUT-SeCCpwdgPsQaf9_JfN1cXGQ_AXP6pNl</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Heesch, Svenja</creator><creator>Serrano‐Serrano, Martha</creator><creator>Barrera‐Redondo, Josué</creator><creator>Luthringer, Rémy</creator><creator>Peters, Akira F.</creator><creator>Destombe, Christophe</creator><creator>Cock, J. Mark</creator><creator>Valero, Myriam</creator><creator>Roze, Denis</creator><creator>Salamin, Nicolas</creator><creator>Coelho, Susana M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2819-1238</orcidid><orcidid>https://orcid.org/0000-0003-3313-725X</orcidid><orcidid>https://orcid.org/0000-0001-5656-9659</orcidid><orcidid>https://orcid.org/0000-0002-9000-1423</orcidid><orcidid>https://orcid.org/0000-0003-3545-3504</orcidid><orcidid>https://orcid.org/0000-0002-9171-2550</orcidid><orcidid>https://orcid.org/0000-0002-2650-0383</orcidid><orcidid>https://orcid.org/0000-0002-4531-0921</orcidid><orcidid>https://orcid.org/0000-0002-3963-4954</orcidid><orcidid>https://orcid.org/0000-0003-4053-3840</orcidid><orcidid>https://orcid.org/0000-0001-5332-199X</orcidid></search><sort><creationdate>202107</creationdate><title>Evolution of life cycles and reproductive traits: Insights from the brown algae</title><author>Heesch, Svenja ; Serrano‐Serrano, Martha ; Barrera‐Redondo, Josué ; Luthringer, Rémy ; Peters, Akira F. ; Destombe, Christophe ; Cock, J. Mark ; Valero, Myriam ; Roze, Denis ; Salamin, Nicolas ; Coelho, Susana M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4220-680b03a8e2e1c3074f9baf156cd01426a1ce6f37bfca1ea445bc2184cbeef51f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algae</topic><topic>Animals</topic><topic>Asexual reproduction</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biological Evolution</topic><topic>Complementation</topic><topic>Diploids</topic><topic>Environmental Sciences</topic><topic>Evolution</topic><topic>gamete size</topic><topic>Life Cycle Stages</topic><topic>Life cycles</topic><topic>Mutation</topic><topic>parthenogenesis</topic><topic>Phaeophyceae</topic><topic>Phaeophyceae - genetics</topic><topic>Phylogeny</topic><topic>ploidy</topic><topic>Reproduction</topic><topic>Reproduction (biology)</topic><topic>Sex determination</topic><topic>Sexual dimorphism</topic><topic>Sexual reproduction</topic><topic>Species diversity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heesch, Svenja</creatorcontrib><creatorcontrib>Serrano‐Serrano, Martha</creatorcontrib><creatorcontrib>Barrera‐Redondo, Josué</creatorcontrib><creatorcontrib>Luthringer, Rémy</creatorcontrib><creatorcontrib>Peters, Akira F.</creatorcontrib><creatorcontrib>Destombe, Christophe</creatorcontrib><creatorcontrib>Cock, J. Mark</creatorcontrib><creatorcontrib>Valero, Myriam</creatorcontrib><creatorcontrib>Roze, Denis</creatorcontrib><creatorcontrib>Salamin, Nicolas</creatorcontrib><creatorcontrib>Coelho, Susana M.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of evolutionary biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heesch, Svenja</au><au>Serrano‐Serrano, Martha</au><au>Barrera‐Redondo, Josué</au><au>Luthringer, Rémy</au><au>Peters, Akira F.</au><au>Destombe, Christophe</au><au>Cock, J. Mark</au><au>Valero, Myriam</au><au>Roze, Denis</au><au>Salamin, Nicolas</au><au>Coelho, Susana M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of life cycles and reproductive traits: Insights from the brown algae</atitle><jtitle>Journal of evolutionary biology</jtitle><addtitle>J Evol Biol</addtitle><date>2021-07</date><risdate>2021</risdate><volume>34</volume><issue>7</issue><spage>992</spage><epage>1009</epage><pages>992-1009</pages><issn>1010-061X</issn><eissn>1420-9101</eissn><abstract>A vast diversity of types of life cycles exists in nature, and several theories have been advanced to explain how this diversity has evolved and how each type of life cycle is retained over evolutionary time. Here, we exploited the diversity of life cycles and reproductive traits of the brown algae (Phaeophyceae) to test several hypotheses on the evolution of life cycles. We investigated the evolutionary dynamics of four life‐history traits: life cycle, sexual system, level of gamete dimorphism and gamete parthenogenetic capacity. We assigned states to up to 77 representative species of the taxonomic diversity of the brown algal group, in a multi‐gene phylogeny. We used maximum likelihood and Bayesian analyses of correlated evolution, while taking the phylogeny into account, to test for correlations between traits and to investigate the chronological sequence of trait acquisition. Our analyses are consistent with the prediction that diploid growth evolves when sexual reproduction is preferred over asexual reproduction, possibly because it allows the complementation of deleterious mutations. We also found that haploid sex determination is ancestral in relation to diploid sex determination. However, our results could not address whether increased zygotic and diploid growth are associated with increased sexual dimorphism. Our analyses suggest that in the brown algae, isogamous species evolved from anisogamous ancestors, contrary to the commonly reported pattern where evolution proceeds from isogamy to anisogamy. The brown algae are a eukaryotic lineage that evolved complex life cycles independently of plants and animals, with several instances of haploid‐dominant, diploid‐dominant and equally dominant life cycles. We reconstructed the history of life cycle evolution throughout the brown algae alongside other reproductive traits, such as the sex‐determination system, the gamete sizes and the ability to undergo parthenogenesis. We also performed correlation analyses between the evolutionary transitions of these traits to test several long‐standing hypotheses concerning the evolution of life cycles in eukaryotes.</abstract><cop>Switzerland</cop><pub>Blackwell Publishing Ltd</pub><pmid>34096650</pmid><doi>10.1111/jeb.13880</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2819-1238</orcidid><orcidid>https://orcid.org/0000-0003-3313-725X</orcidid><orcidid>https://orcid.org/0000-0001-5656-9659</orcidid><orcidid>https://orcid.org/0000-0002-9000-1423</orcidid><orcidid>https://orcid.org/0000-0003-3545-3504</orcidid><orcidid>https://orcid.org/0000-0002-9171-2550</orcidid><orcidid>https://orcid.org/0000-0002-2650-0383</orcidid><orcidid>https://orcid.org/0000-0002-4531-0921</orcidid><orcidid>https://orcid.org/0000-0002-3963-4954</orcidid><orcidid>https://orcid.org/0000-0003-4053-3840</orcidid><orcidid>https://orcid.org/0000-0001-5332-199X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1010-061X
ispartof Journal of evolutionary biology, 2021-07, Vol.34 (7), p.992-1009
issn 1010-061X
1420-9101
language eng
recordid cdi_hal_primary_oai_HAL_hal_03254135v1
source MEDLINE; Access via Wiley Online Library; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Algae
Animals
Asexual reproduction
Bayes Theorem
Bayesian analysis
Biological Evolution
Complementation
Diploids
Environmental Sciences
Evolution
gamete size
Life Cycle Stages
Life cycles
Mutation
parthenogenesis
Phaeophyceae
Phaeophyceae - genetics
Phylogeny
ploidy
Reproduction
Reproduction (biology)
Sex determination
Sexual dimorphism
Sexual reproduction
Species diversity
title Evolution of life cycles and reproductive traits: Insights from the brown algae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20life%20cycles%20and%20reproductive%20traits:%20Insights%20from%20the%20brown%20algae&rft.jtitle=Journal%20of%20evolutionary%20biology&rft.au=Heesch,%20Svenja&rft.date=2021-07&rft.volume=34&rft.issue=7&rft.spage=992&rft.epage=1009&rft.pages=992-1009&rft.issn=1010-061X&rft.eissn=1420-9101&rft_id=info:doi/10.1111/jeb.13880&rft_dat=%3Cproquest_hal_p%3E2538047992%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549915223&rft_id=info:pmid/34096650&rfr_iscdi=true