Ray scattering model for spherical transparent particles
We propose a model for the reflectance of a particle medium made of identical, large, spherical, and absorbing particles in a clear binder. A 3D geometrical description of light scattering is developed by relying on the laws of geometrical optics. The amount of light backscattered by a single partic...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2008-07, Vol.25 (7), p.1521-1534 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1534 |
---|---|
container_issue | 7 |
container_start_page | 1521 |
container_title | Journal of the Optical Society of America. A, Optics, image science, and vision |
container_volume | 25 |
creator | SIMONOT, Lionel HEBERT, Mathieu HERSCH, Roger D GARAY, Hélène |
description | We propose a model for the reflectance of a particle medium made of identical, large, spherical, and absorbing particles in a clear binder. A 3D geometrical description of light scattering is developed by relying on the laws of geometrical optics. The amount of light backscattered by a single particle is determined as a function of its absorbance and refractive index. Then, we consider a set of coplanar particles, called a particle sublayer, whose reflectance and transmittance are functions of the particle backscattering ratio and the particle concentration. The reflectance of an infinite particle medium is derived from a description of multiple reflections and transmissions between many superposed particle sublayers. When the binder has a refractive index different from that of air, the medium's reflectance factor accounts for the multiple reflections occurring beneath the air-binder interface as well as for the measuring geometry. The influences of various parameters, such as the refractive indices and the particle absorption coefficient, are examined. |
doi_str_mv | 10.1364/JOSAA.25.001521 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03252984v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69278857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-d5c12a75ba9ecb90db08d7d54a18653cd451959d6a384dbcfb4d7e240739a5cd3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMotlbP3mQvCh62nWSTTXIsRa1SKPhxDtkka1f2oyZbof_e1JZ6eofhmRfmQegawxhnOZ28LN-m0zFhYwDMCD5BwxiQCpaR0ziDoClnRA7QRQhfAEBzwc_RAAsmaQ58iMSr3ibB6L53vmo_k6azrk7KzidhvYoro-uk97oNa-1d2ycx-srULlyis1LXwV0dcoQ-Hh_eZ_N0sXx6nk0XqaEAfWqZwURzVmjpTCHBFiAst4xqLHKWGUsZlkzaXGeC2sKUBbXcEQo8k5oZm43Q_b53pWu19lWj_VZ1ulLz6ULtdpCR-KGgPziyd3t27bvvjQu9aqpgXF3r1nWboHJJuBCMR3CyB43vQvCuPDZjUDux6k-sIkztxcaLm0P1pmic_ecPJiNwewB01FmX0ZmpwpEjwOJPErJfLTN_uA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69278857</pqid></control><display><type>article</type><title>Ray scattering model for spherical transparent particles</title><source>Optica Publishing Group Journals</source><creator>SIMONOT, Lionel ; HEBERT, Mathieu ; HERSCH, Roger D ; GARAY, Hélène</creator><creatorcontrib>SIMONOT, Lionel ; HEBERT, Mathieu ; HERSCH, Roger D ; GARAY, Hélène</creatorcontrib><description>We propose a model for the reflectance of a particle medium made of identical, large, spherical, and absorbing particles in a clear binder. A 3D geometrical description of light scattering is developed by relying on the laws of geometrical optics. The amount of light backscattered by a single particle is determined as a function of its absorbance and refractive index. Then, we consider a set of coplanar particles, called a particle sublayer, whose reflectance and transmittance are functions of the particle backscattering ratio and the particle concentration. The reflectance of an infinite particle medium is derived from a description of multiple reflections and transmissions between many superposed particle sublayers. When the binder has a refractive index different from that of air, the medium's reflectance factor accounts for the multiple reflections occurring beneath the air-binder interface as well as for the measuring geometry. The influences of various parameters, such as the refractive indices and the particle absorption coefficient, are examined.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.25.001521</identifier><identifier>PMID: 18594607</identifier><language>eng</language><publisher>Washington, DC: Optical Society of America</publisher><subject>Diffraction and scattering ; Engineering Sciences ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Geometrical optics ; Optics ; Physics ; Wave optics</subject><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2008-07, Vol.25 (7), p.1521-1534</ispartof><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-d5c12a75ba9ecb90db08d7d54a18653cd451959d6a384dbcfb4d7e240739a5cd3</citedby><cites>FETCH-LOGICAL-c400t-d5c12a75ba9ecb90db08d7d54a18653cd451959d6a384dbcfb4d7e240739a5cd3</cites><orcidid>0000-0002-9935-6896 ; 0000-0002-3497-2647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,3259,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20540790$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18594607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://imt-mines-ales.hal.science/hal-03252984$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>SIMONOT, Lionel</creatorcontrib><creatorcontrib>HEBERT, Mathieu</creatorcontrib><creatorcontrib>HERSCH, Roger D</creatorcontrib><creatorcontrib>GARAY, Hélène</creatorcontrib><title>Ray scattering model for spherical transparent particles</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><description>We propose a model for the reflectance of a particle medium made of identical, large, spherical, and absorbing particles in a clear binder. A 3D geometrical description of light scattering is developed by relying on the laws of geometrical optics. The amount of light backscattered by a single particle is determined as a function of its absorbance and refractive index. Then, we consider a set of coplanar particles, called a particle sublayer, whose reflectance and transmittance are functions of the particle backscattering ratio and the particle concentration. The reflectance of an infinite particle medium is derived from a description of multiple reflections and transmissions between many superposed particle sublayers. When the binder has a refractive index different from that of air, the medium's reflectance factor accounts for the multiple reflections occurring beneath the air-binder interface as well as for the measuring geometry. The influences of various parameters, such as the refractive indices and the particle absorption coefficient, are examined.</description><subject>Diffraction and scattering</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geometrical optics</subject><subject>Optics</subject><subject>Physics</subject><subject>Wave optics</subject><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMotlbP3mQvCh62nWSTTXIsRa1SKPhxDtkka1f2oyZbof_e1JZ6eofhmRfmQegawxhnOZ28LN-m0zFhYwDMCD5BwxiQCpaR0ziDoClnRA7QRQhfAEBzwc_RAAsmaQ58iMSr3ibB6L53vmo_k6azrk7KzidhvYoro-uk97oNa-1d2ycx-srULlyis1LXwV0dcoQ-Hh_eZ_N0sXx6nk0XqaEAfWqZwURzVmjpTCHBFiAst4xqLHKWGUsZlkzaXGeC2sKUBbXcEQo8k5oZm43Q_b53pWu19lWj_VZ1ulLz6ULtdpCR-KGgPziyd3t27bvvjQu9aqpgXF3r1nWboHJJuBCMR3CyB43vQvCuPDZjUDux6k-sIkztxcaLm0P1pmic_ecPJiNwewB01FmX0ZmpwpEjwOJPErJfLTN_uA</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>SIMONOT, Lionel</creator><creator>HEBERT, Mathieu</creator><creator>HERSCH, Roger D</creator><creator>GARAY, Hélène</creator><general>Optical Society of America</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9935-6896</orcidid><orcidid>https://orcid.org/0000-0002-3497-2647</orcidid></search><sort><creationdate>20080701</creationdate><title>Ray scattering model for spherical transparent particles</title><author>SIMONOT, Lionel ; HEBERT, Mathieu ; HERSCH, Roger D ; GARAY, Hélène</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-d5c12a75ba9ecb90db08d7d54a18653cd451959d6a384dbcfb4d7e240739a5cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Diffraction and scattering</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geometrical optics</topic><topic>Optics</topic><topic>Physics</topic><topic>Wave optics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SIMONOT, Lionel</creatorcontrib><creatorcontrib>HEBERT, Mathieu</creatorcontrib><creatorcontrib>HERSCH, Roger D</creatorcontrib><creatorcontrib>GARAY, Hélène</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SIMONOT, Lionel</au><au>HEBERT, Mathieu</au><au>HERSCH, Roger D</au><au>GARAY, Hélène</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ray scattering model for spherical transparent particles</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>25</volume><issue>7</issue><spage>1521</spage><epage>1534</epage><pages>1521-1534</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>We propose a model for the reflectance of a particle medium made of identical, large, spherical, and absorbing particles in a clear binder. A 3D geometrical description of light scattering is developed by relying on the laws of geometrical optics. The amount of light backscattered by a single particle is determined as a function of its absorbance and refractive index. Then, we consider a set of coplanar particles, called a particle sublayer, whose reflectance and transmittance are functions of the particle backscattering ratio and the particle concentration. The reflectance of an infinite particle medium is derived from a description of multiple reflections and transmissions between many superposed particle sublayers. When the binder has a refractive index different from that of air, the medium's reflectance factor accounts for the multiple reflections occurring beneath the air-binder interface as well as for the measuring geometry. The influences of various parameters, such as the refractive indices and the particle absorption coefficient, are examined.</abstract><cop>Washington, DC</cop><pub>Optical Society of America</pub><pmid>18594607</pmid><doi>10.1364/JOSAA.25.001521</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9935-6896</orcidid><orcidid>https://orcid.org/0000-0002-3497-2647</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1084-7529 |
ispartof | Journal of the Optical Society of America. A, Optics, image science, and vision, 2008-07, Vol.25 (7), p.1521-1534 |
issn | 1084-7529 1520-8532 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03252984v1 |
source | Optica Publishing Group Journals |
subjects | Diffraction and scattering Engineering Sciences Exact sciences and technology Fundamental areas of phenomenology (including applications) Geometrical optics Optics Physics Wave optics |
title | Ray scattering model for spherical transparent particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A15%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ray%20scattering%20model%20for%20spherical%20transparent%20particles&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=SIMONOT,%20Lionel&rft.date=2008-07-01&rft.volume=25&rft.issue=7&rft.spage=1521&rft.epage=1534&rft.pages=1521-1534&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.25.001521&rft_dat=%3Cproquest_hal_p%3E69278857%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69278857&rft_id=info:pmid/18594607&rfr_iscdi=true |