Ray scattering model for spherical transparent particles

We propose a model for the reflectance of a particle medium made of identical, large, spherical, and absorbing particles in a clear binder. A 3D geometrical description of light scattering is developed by relying on the laws of geometrical optics. The amount of light backscattered by a single partic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2008-07, Vol.25 (7), p.1521-1534
Hauptverfasser: SIMONOT, Lionel, HEBERT, Mathieu, HERSCH, Roger D, GARAY, Hélène
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1534
container_issue 7
container_start_page 1521
container_title Journal of the Optical Society of America. A, Optics, image science, and vision
container_volume 25
creator SIMONOT, Lionel
HEBERT, Mathieu
HERSCH, Roger D
GARAY, Hélène
description We propose a model for the reflectance of a particle medium made of identical, large, spherical, and absorbing particles in a clear binder. A 3D geometrical description of light scattering is developed by relying on the laws of geometrical optics. The amount of light backscattered by a single particle is determined as a function of its absorbance and refractive index. Then, we consider a set of coplanar particles, called a particle sublayer, whose reflectance and transmittance are functions of the particle backscattering ratio and the particle concentration. The reflectance of an infinite particle medium is derived from a description of multiple reflections and transmissions between many superposed particle sublayers. When the binder has a refractive index different from that of air, the medium's reflectance factor accounts for the multiple reflections occurring beneath the air-binder interface as well as for the measuring geometry. The influences of various parameters, such as the refractive indices and the particle absorption coefficient, are examined.
doi_str_mv 10.1364/JOSAA.25.001521
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03252984v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69278857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-d5c12a75ba9ecb90db08d7d54a18653cd451959d6a384dbcfb4d7e240739a5cd3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMotlbP3mQvCh62nWSTTXIsRa1SKPhxDtkka1f2oyZbof_e1JZ6eofhmRfmQegawxhnOZ28LN-m0zFhYwDMCD5BwxiQCpaR0ziDoClnRA7QRQhfAEBzwc_RAAsmaQ58iMSr3ibB6L53vmo_k6azrk7KzidhvYoro-uk97oNa-1d2ycx-srULlyis1LXwV0dcoQ-Hh_eZ_N0sXx6nk0XqaEAfWqZwURzVmjpTCHBFiAst4xqLHKWGUsZlkzaXGeC2sKUBbXcEQo8k5oZm43Q_b53pWu19lWj_VZ1ulLz6ULtdpCR-KGgPziyd3t27bvvjQu9aqpgXF3r1nWboHJJuBCMR3CyB43vQvCuPDZjUDux6k-sIkztxcaLm0P1pmic_ecPJiNwewB01FmX0ZmpwpEjwOJPErJfLTN_uA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69278857</pqid></control><display><type>article</type><title>Ray scattering model for spherical transparent particles</title><source>Optica Publishing Group Journals</source><creator>SIMONOT, Lionel ; HEBERT, Mathieu ; HERSCH, Roger D ; GARAY, Hélène</creator><creatorcontrib>SIMONOT, Lionel ; HEBERT, Mathieu ; HERSCH, Roger D ; GARAY, Hélène</creatorcontrib><description>We propose a model for the reflectance of a particle medium made of identical, large, spherical, and absorbing particles in a clear binder. A 3D geometrical description of light scattering is developed by relying on the laws of geometrical optics. The amount of light backscattered by a single particle is determined as a function of its absorbance and refractive index. Then, we consider a set of coplanar particles, called a particle sublayer, whose reflectance and transmittance are functions of the particle backscattering ratio and the particle concentration. The reflectance of an infinite particle medium is derived from a description of multiple reflections and transmissions between many superposed particle sublayers. When the binder has a refractive index different from that of air, the medium's reflectance factor accounts for the multiple reflections occurring beneath the air-binder interface as well as for the measuring geometry. The influences of various parameters, such as the refractive indices and the particle absorption coefficient, are examined.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.25.001521</identifier><identifier>PMID: 18594607</identifier><language>eng</language><publisher>Washington, DC: Optical Society of America</publisher><subject>Diffraction and scattering ; Engineering Sciences ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Geometrical optics ; Optics ; Physics ; Wave optics</subject><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2008-07, Vol.25 (7), p.1521-1534</ispartof><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-d5c12a75ba9ecb90db08d7d54a18653cd451959d6a384dbcfb4d7e240739a5cd3</citedby><cites>FETCH-LOGICAL-c400t-d5c12a75ba9ecb90db08d7d54a18653cd451959d6a384dbcfb4d7e240739a5cd3</cites><orcidid>0000-0002-9935-6896 ; 0000-0002-3497-2647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,3259,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20540790$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18594607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://imt-mines-ales.hal.science/hal-03252984$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>SIMONOT, Lionel</creatorcontrib><creatorcontrib>HEBERT, Mathieu</creatorcontrib><creatorcontrib>HERSCH, Roger D</creatorcontrib><creatorcontrib>GARAY, Hélène</creatorcontrib><title>Ray scattering model for spherical transparent particles</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><description>We propose a model for the reflectance of a particle medium made of identical, large, spherical, and absorbing particles in a clear binder. A 3D geometrical description of light scattering is developed by relying on the laws of geometrical optics. The amount of light backscattered by a single particle is determined as a function of its absorbance and refractive index. Then, we consider a set of coplanar particles, called a particle sublayer, whose reflectance and transmittance are functions of the particle backscattering ratio and the particle concentration. The reflectance of an infinite particle medium is derived from a description of multiple reflections and transmissions between many superposed particle sublayers. When the binder has a refractive index different from that of air, the medium's reflectance factor accounts for the multiple reflections occurring beneath the air-binder interface as well as for the measuring geometry. The influences of various parameters, such as the refractive indices and the particle absorption coefficient, are examined.</description><subject>Diffraction and scattering</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geometrical optics</subject><subject>Optics</subject><subject>Physics</subject><subject>Wave optics</subject><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMotlbP3mQvCh62nWSTTXIsRa1SKPhxDtkka1f2oyZbof_e1JZ6eofhmRfmQegawxhnOZ28LN-m0zFhYwDMCD5BwxiQCpaR0ziDoClnRA7QRQhfAEBzwc_RAAsmaQ58iMSr3ibB6L53vmo_k6azrk7KzidhvYoro-uk97oNa-1d2ycx-srULlyis1LXwV0dcoQ-Hh_eZ_N0sXx6nk0XqaEAfWqZwURzVmjpTCHBFiAst4xqLHKWGUsZlkzaXGeC2sKUBbXcEQo8k5oZm43Q_b53pWu19lWj_VZ1ulLz6ULtdpCR-KGgPziyd3t27bvvjQu9aqpgXF3r1nWboHJJuBCMR3CyB43vQvCuPDZjUDux6k-sIkztxcaLm0P1pmic_ecPJiNwewB01FmX0ZmpwpEjwOJPErJfLTN_uA</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>SIMONOT, Lionel</creator><creator>HEBERT, Mathieu</creator><creator>HERSCH, Roger D</creator><creator>GARAY, Hélène</creator><general>Optical Society of America</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9935-6896</orcidid><orcidid>https://orcid.org/0000-0002-3497-2647</orcidid></search><sort><creationdate>20080701</creationdate><title>Ray scattering model for spherical transparent particles</title><author>SIMONOT, Lionel ; HEBERT, Mathieu ; HERSCH, Roger D ; GARAY, Hélène</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-d5c12a75ba9ecb90db08d7d54a18653cd451959d6a384dbcfb4d7e240739a5cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Diffraction and scattering</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geometrical optics</topic><topic>Optics</topic><topic>Physics</topic><topic>Wave optics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SIMONOT, Lionel</creatorcontrib><creatorcontrib>HEBERT, Mathieu</creatorcontrib><creatorcontrib>HERSCH, Roger D</creatorcontrib><creatorcontrib>GARAY, Hélène</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SIMONOT, Lionel</au><au>HEBERT, Mathieu</au><au>HERSCH, Roger D</au><au>GARAY, Hélène</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ray scattering model for spherical transparent particles</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>25</volume><issue>7</issue><spage>1521</spage><epage>1534</epage><pages>1521-1534</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>We propose a model for the reflectance of a particle medium made of identical, large, spherical, and absorbing particles in a clear binder. A 3D geometrical description of light scattering is developed by relying on the laws of geometrical optics. The amount of light backscattered by a single particle is determined as a function of its absorbance and refractive index. Then, we consider a set of coplanar particles, called a particle sublayer, whose reflectance and transmittance are functions of the particle backscattering ratio and the particle concentration. The reflectance of an infinite particle medium is derived from a description of multiple reflections and transmissions between many superposed particle sublayers. When the binder has a refractive index different from that of air, the medium's reflectance factor accounts for the multiple reflections occurring beneath the air-binder interface as well as for the measuring geometry. The influences of various parameters, such as the refractive indices and the particle absorption coefficient, are examined.</abstract><cop>Washington, DC</cop><pub>Optical Society of America</pub><pmid>18594607</pmid><doi>10.1364/JOSAA.25.001521</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9935-6896</orcidid><orcidid>https://orcid.org/0000-0002-3497-2647</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1084-7529
ispartof Journal of the Optical Society of America. A, Optics, image science, and vision, 2008-07, Vol.25 (7), p.1521-1534
issn 1084-7529
1520-8532
language eng
recordid cdi_hal_primary_oai_HAL_hal_03252984v1
source Optica Publishing Group Journals
subjects Diffraction and scattering
Engineering Sciences
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Geometrical optics
Optics
Physics
Wave optics
title Ray scattering model for spherical transparent particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A15%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ray%20scattering%20model%20for%20spherical%20transparent%20particles&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=SIMONOT,%20Lionel&rft.date=2008-07-01&rft.volume=25&rft.issue=7&rft.spage=1521&rft.epage=1534&rft.pages=1521-1534&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.25.001521&rft_dat=%3Cproquest_hal_p%3E69278857%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69278857&rft_id=info:pmid/18594607&rfr_iscdi=true