Refined floor diagrams from higher genera and lambda classes
We show that, after the change of variables q = e iu , refined floor diagrams for P 2 and Hirzebruch surfaces compute generating series of higher genus relative Gromov–Witten invariants with insertion of a lambda class. The proof uses an inductive application of the degeneration formula in relative...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2021, Vol.27 (3), Article 43 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that, after the change of variables
q
=
e
iu
, refined floor diagrams for
P
2
and Hirzebruch surfaces compute generating series of higher genus relative Gromov–Witten invariants with insertion of a lambda class. The proof uses an inductive application of the degeneration formula in relative Gromov–Witten theory and an explicit result in relative Gromov–Witten theory of
P
1
. Combining this result with the similar looking refined tropical correspondence theorem for log Gromov–Witten invariants, we obtain a non-trivial relation between relative and log Gromov–Witten invariants for
P
2
and Hirzebruch surfaces. We also prove that the Block–Göttsche invariants of
F
0
and
F
2
are related by the Abramovich–Bertram formula. |
---|---|
ISSN: | 1022-1824 1420-9020 |
DOI: | 10.1007/s00029-021-00667-w |