Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control theory solutions

Next generation communication networks are expected to accommodate a high number of new and resource-voracious applications that can be offered to a large range of end users. Even though end devices are becoming more powerful, the available local resources cannot cope with the requirements of these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2021-08, Vol.195, p.108177, Article 108177
Hauptverfasser: Saeik, Firdose, Avgeris, Marios, Spatharakis, Dimitrios, Santi, Nina, Dechouniotis, Dimitrios, Violos, John, Leivadeas, Aris, Athanasopoulos, Nikolaos, Mitton, Nathalie, Papavassiliou, Symeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108177
container_title Computer networks (Amsterdam, Netherlands : 1999)
container_volume 195
creator Saeik, Firdose
Avgeris, Marios
Spatharakis, Dimitrios
Santi, Nina
Dechouniotis, Dimitrios
Violos, John
Leivadeas, Aris
Athanasopoulos, Nikolaos
Mitton, Nathalie
Papavassiliou, Symeon
description Next generation communication networks are expected to accommodate a high number of new and resource-voracious applications that can be offered to a large range of end users. Even though end devices are becoming more powerful, the available local resources cannot cope with the requirements of these applications. This has created a new challenge called task offloading, where computation intensive tasks need to be offloaded to more resource powerful remote devices. Naturally, the Cloud Computing is a well-tested infrastructure that can facilitate the task offloading. However, Cloud Computing as a centralized and distant infrastructure creates significant communication delays that cannot satisfy the requirements of the emerging delay-sensitive applications. To this end, the concept of Edge Computing has been proposed, where the Cloud Computing capabilities are repositioned closer to the end devices at the edge of the network. This paper provides a detailed survey of how the Edge and/or Cloud can be combined together to facilitate the task offloading problem. Particular emphasis is given on the mathematical, artificial intelligence and control theory optimization approaches that can be used to satisfy the various objectives, constraints and dynamic conditions of this end-to-end application execution approach. The survey concludes with identifying open challenges and future directions of the problem at hand.
doi_str_mv 10.1016/j.comnet.2021.108177
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03243071v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128621002322</els_id><sourcerecordid>2562928249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-5ba2480f800cca7c57713d0748dddfd592f01a36df8d96a3e5ca644ac1f6d573</originalsourceid><addsrcrecordid>eNp9kUtrGzEURoeSQPP6B10IsgpkXEmjGWmyCBiTNgVDN96LGz0cubLkSBqD6Z-vzJQuu7kSV-ceJH1N84XgBcFk-LpbqLgPpiwopqS2BOH8U3NFBKctx8N4UfedGFtCxfC5uc55hzFmjIqr5vcG8i8UrfURtAtb5AJ60VuDIGi08nGqNe4PU6lnT2iJ8pSO5oRiQHso76YWp8A_IkjFWacc-Gooxnu3NUHNGhVDSdGjysd0Qjn6qosh3zaXFnw2d3_Xm2bz7WWzem3XP7__WC3XrWKElbZ_A8oEtgJjpYCrnnPSacyZ0Fpb3Y_UYgLdoK3Q4wCd6RUMjIEidtA9726ah1n7Dl4ekttDOskITr4u1_Lcwx1lHebkSCp7P7OHFD8mk4vcxSmFejtJ-4GOVFA2VorNlEox52TsPy3B8pyI3Mk5EXlORM6J1LHneczUxx6dSTIrd_4l7ZJRRero_i_4A3u2lzM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562928249</pqid></control><display><type>article</type><title>Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control theory solutions</title><source>Elsevier ScienceDirect Journals</source><creator>Saeik, Firdose ; Avgeris, Marios ; Spatharakis, Dimitrios ; Santi, Nina ; Dechouniotis, Dimitrios ; Violos, John ; Leivadeas, Aris ; Athanasopoulos, Nikolaos ; Mitton, Nathalie ; Papavassiliou, Symeon</creator><creatorcontrib>Saeik, Firdose ; Avgeris, Marios ; Spatharakis, Dimitrios ; Santi, Nina ; Dechouniotis, Dimitrios ; Violos, John ; Leivadeas, Aris ; Athanasopoulos, Nikolaos ; Mitton, Nathalie ; Papavassiliou, Symeon</creatorcontrib><description>Next generation communication networks are expected to accommodate a high number of new and resource-voracious applications that can be offered to a large range of end users. Even though end devices are becoming more powerful, the available local resources cannot cope with the requirements of these applications. This has created a new challenge called task offloading, where computation intensive tasks need to be offloaded to more resource powerful remote devices. Naturally, the Cloud Computing is a well-tested infrastructure that can facilitate the task offloading. However, Cloud Computing as a centralized and distant infrastructure creates significant communication delays that cannot satisfy the requirements of the emerging delay-sensitive applications. To this end, the concept of Edge Computing has been proposed, where the Cloud Computing capabilities are repositioned closer to the end devices at the edge of the network. This paper provides a detailed survey of how the Edge and/or Cloud can be combined together to facilitate the task offloading problem. Particular emphasis is given on the mathematical, artificial intelligence and control theory optimization approaches that can be used to satisfy the various objectives, constraints and dynamic conditions of this end-to-end application execution approach. The survey concludes with identifying open challenges and future directions of the problem at hand.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2021.108177</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Artificial intelligence ; Cloud computing ; Communication networks ; Computation offloading ; Computer Science ; Control theory ; Distributed, Parallel, and Cluster Computing ; Edge Computing ; End users ; Infrastructure ; Mathematical optimization ; Networking and Internet Architecture ; Optimization ; Resource allocation ; Task offloading ; Ubiquitous Computing</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2021-08, Vol.195, p.108177, Article 108177</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Aug 4, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-5ba2480f800cca7c57713d0748dddfd592f01a36df8d96a3e5ca644ac1f6d573</citedby><cites>FETCH-LOGICAL-c414t-5ba2480f800cca7c57713d0748dddfd592f01a36df8d96a3e5ca644ac1f6d573</cites><orcidid>0000-0003-3094-4283 ; 0000-0003-4219-3915 ; 0000-0002-8984-9064 ; 0000-0002-8817-6275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.comnet.2021.108177$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03243071$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Saeik, Firdose</creatorcontrib><creatorcontrib>Avgeris, Marios</creatorcontrib><creatorcontrib>Spatharakis, Dimitrios</creatorcontrib><creatorcontrib>Santi, Nina</creatorcontrib><creatorcontrib>Dechouniotis, Dimitrios</creatorcontrib><creatorcontrib>Violos, John</creatorcontrib><creatorcontrib>Leivadeas, Aris</creatorcontrib><creatorcontrib>Athanasopoulos, Nikolaos</creatorcontrib><creatorcontrib>Mitton, Nathalie</creatorcontrib><creatorcontrib>Papavassiliou, Symeon</creatorcontrib><title>Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control theory solutions</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>Next generation communication networks are expected to accommodate a high number of new and resource-voracious applications that can be offered to a large range of end users. Even though end devices are becoming more powerful, the available local resources cannot cope with the requirements of these applications. This has created a new challenge called task offloading, where computation intensive tasks need to be offloaded to more resource powerful remote devices. Naturally, the Cloud Computing is a well-tested infrastructure that can facilitate the task offloading. However, Cloud Computing as a centralized and distant infrastructure creates significant communication delays that cannot satisfy the requirements of the emerging delay-sensitive applications. To this end, the concept of Edge Computing has been proposed, where the Cloud Computing capabilities are repositioned closer to the end devices at the edge of the network. This paper provides a detailed survey of how the Edge and/or Cloud can be combined together to facilitate the task offloading problem. Particular emphasis is given on the mathematical, artificial intelligence and control theory optimization approaches that can be used to satisfy the various objectives, constraints and dynamic conditions of this end-to-end application execution approach. The survey concludes with identifying open challenges and future directions of the problem at hand.</description><subject>Artificial intelligence</subject><subject>Cloud computing</subject><subject>Communication networks</subject><subject>Computation offloading</subject><subject>Computer Science</subject><subject>Control theory</subject><subject>Distributed, Parallel, and Cluster Computing</subject><subject>Edge Computing</subject><subject>End users</subject><subject>Infrastructure</subject><subject>Mathematical optimization</subject><subject>Networking and Internet Architecture</subject><subject>Optimization</subject><subject>Resource allocation</subject><subject>Task offloading</subject><subject>Ubiquitous Computing</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUtrGzEURoeSQPP6B10IsgpkXEmjGWmyCBiTNgVDN96LGz0cubLkSBqD6Z-vzJQuu7kSV-ceJH1N84XgBcFk-LpbqLgPpiwopqS2BOH8U3NFBKctx8N4UfedGFtCxfC5uc55hzFmjIqr5vcG8i8UrfURtAtb5AJ60VuDIGi08nGqNe4PU6lnT2iJ8pSO5oRiQHso76YWp8A_IkjFWacc-Gooxnu3NUHNGhVDSdGjysd0Qjn6qosh3zaXFnw2d3_Xm2bz7WWzem3XP7__WC3XrWKElbZ_A8oEtgJjpYCrnnPSacyZ0Fpb3Y_UYgLdoK3Q4wCd6RUMjIEidtA9726ah1n7Dl4ekttDOskITr4u1_Lcwx1lHebkSCp7P7OHFD8mk4vcxSmFejtJ-4GOVFA2VorNlEox52TsPy3B8pyI3Mk5EXlORM6J1LHneczUxx6dSTIrd_4l7ZJRRero_i_4A3u2lzM</recordid><startdate>20210804</startdate><enddate>20210804</enddate><creator>Saeik, Firdose</creator><creator>Avgeris, Marios</creator><creator>Spatharakis, Dimitrios</creator><creator>Santi, Nina</creator><creator>Dechouniotis, Dimitrios</creator><creator>Violos, John</creator><creator>Leivadeas, Aris</creator><creator>Athanasopoulos, Nikolaos</creator><creator>Mitton, Nathalie</creator><creator>Papavassiliou, Symeon</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3094-4283</orcidid><orcidid>https://orcid.org/0000-0003-4219-3915</orcidid><orcidid>https://orcid.org/0000-0002-8984-9064</orcidid><orcidid>https://orcid.org/0000-0002-8817-6275</orcidid></search><sort><creationdate>20210804</creationdate><title>Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control theory solutions</title><author>Saeik, Firdose ; Avgeris, Marios ; Spatharakis, Dimitrios ; Santi, Nina ; Dechouniotis, Dimitrios ; Violos, John ; Leivadeas, Aris ; Athanasopoulos, Nikolaos ; Mitton, Nathalie ; Papavassiliou, Symeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-5ba2480f800cca7c57713d0748dddfd592f01a36df8d96a3e5ca644ac1f6d573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Cloud computing</topic><topic>Communication networks</topic><topic>Computation offloading</topic><topic>Computer Science</topic><topic>Control theory</topic><topic>Distributed, Parallel, and Cluster Computing</topic><topic>Edge Computing</topic><topic>End users</topic><topic>Infrastructure</topic><topic>Mathematical optimization</topic><topic>Networking and Internet Architecture</topic><topic>Optimization</topic><topic>Resource allocation</topic><topic>Task offloading</topic><topic>Ubiquitous Computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saeik, Firdose</creatorcontrib><creatorcontrib>Avgeris, Marios</creatorcontrib><creatorcontrib>Spatharakis, Dimitrios</creatorcontrib><creatorcontrib>Santi, Nina</creatorcontrib><creatorcontrib>Dechouniotis, Dimitrios</creatorcontrib><creatorcontrib>Violos, John</creatorcontrib><creatorcontrib>Leivadeas, Aris</creatorcontrib><creatorcontrib>Athanasopoulos, Nikolaos</creatorcontrib><creatorcontrib>Mitton, Nathalie</creatorcontrib><creatorcontrib>Papavassiliou, Symeon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saeik, Firdose</au><au>Avgeris, Marios</au><au>Spatharakis, Dimitrios</au><au>Santi, Nina</au><au>Dechouniotis, Dimitrios</au><au>Violos, John</au><au>Leivadeas, Aris</au><au>Athanasopoulos, Nikolaos</au><au>Mitton, Nathalie</au><au>Papavassiliou, Symeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control theory solutions</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2021-08-04</date><risdate>2021</risdate><volume>195</volume><spage>108177</spage><pages>108177-</pages><artnum>108177</artnum><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>Next generation communication networks are expected to accommodate a high number of new and resource-voracious applications that can be offered to a large range of end users. Even though end devices are becoming more powerful, the available local resources cannot cope with the requirements of these applications. This has created a new challenge called task offloading, where computation intensive tasks need to be offloaded to more resource powerful remote devices. Naturally, the Cloud Computing is a well-tested infrastructure that can facilitate the task offloading. However, Cloud Computing as a centralized and distant infrastructure creates significant communication delays that cannot satisfy the requirements of the emerging delay-sensitive applications. To this end, the concept of Edge Computing has been proposed, where the Cloud Computing capabilities are repositioned closer to the end devices at the edge of the network. This paper provides a detailed survey of how the Edge and/or Cloud can be combined together to facilitate the task offloading problem. Particular emphasis is given on the mathematical, artificial intelligence and control theory optimization approaches that can be used to satisfy the various objectives, constraints and dynamic conditions of this end-to-end application execution approach. The survey concludes with identifying open challenges and future directions of the problem at hand.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2021.108177</doi><orcidid>https://orcid.org/0000-0003-3094-4283</orcidid><orcidid>https://orcid.org/0000-0003-4219-3915</orcidid><orcidid>https://orcid.org/0000-0002-8984-9064</orcidid><orcidid>https://orcid.org/0000-0002-8817-6275</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1389-1286
ispartof Computer networks (Amsterdam, Netherlands : 1999), 2021-08, Vol.195, p.108177, Article 108177
issn 1389-1286
1872-7069
language eng
recordid cdi_hal_primary_oai_HAL_hal_03243071v1
source Elsevier ScienceDirect Journals
subjects Artificial intelligence
Cloud computing
Communication networks
Computation offloading
Computer Science
Control theory
Distributed, Parallel, and Cluster Computing
Edge Computing
End users
Infrastructure
Mathematical optimization
Networking and Internet Architecture
Optimization
Resource allocation
Task offloading
Ubiquitous Computing
title Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control theory solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A07%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task%20offloading%20in%20Edge%20and%20Cloud%20Computing:%20A%20survey%20on%20mathematical,%20artificial%20intelligence%20and%20control%20theory%20solutions&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Saeik,%20Firdose&rft.date=2021-08-04&rft.volume=195&rft.spage=108177&rft.pages=108177-&rft.artnum=108177&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2021.108177&rft_dat=%3Cproquest_hal_p%3E2562928249%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562928249&rft_id=info:pmid/&rft_els_id=S1389128621002322&rfr_iscdi=true