A Bayesian approach to model change propagation mechanisms

Engineering Changes (EC) are often the answers the designers think of while dealing with new performance targets or customers needs and expectations, regarding functionality, aesthetics, security, etc. Engineering change management (ECM) techniques look to predict or control these consequences withi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia CIRP 2018, Vol.70, p.1-6
Hauptverfasser: Mirdamadi, Shirin, Addouche, Sid-Ali, Zolghadri, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title Procedia CIRP
container_volume 70
creator Mirdamadi, Shirin
Addouche, Sid-Ali
Zolghadri, Marc
description Engineering Changes (EC) are often the answers the designers think of while dealing with new performance targets or customers needs and expectations, regarding functionality, aesthetics, security, etc. Engineering change management (ECM) techniques look to predict or control these consequences within an existing system or product, to limit the generated cost and required efforts to integrate such changes. Engineering change management (ECM) techniques look to predict or control these consequences within an existing system or product, to limit the generated cost and required efforts to integrate such changes. This paper addresses the issue of enhancing the ability of the ”change evaluation” through the suggested technique. We propose a methodology that covers change analysis and evaluation from change’s objective initialization to formulation of recommendation based on system engineering framework (ANSI/EIA-649 1998). We use a modeling technique based on influence diagrams able to integrate different uncertainty levels (on dependencies) in a unique model. It will be shown that the models offer the ability to analyze change impacts but also allow to synthesize the system. Finally, these results can be obtained in a very efficient way which gives the possibility of their use during a design meeting in a practical way at the very beginning of a change project and mainly to support go/no-go decision.
doi_str_mv 10.1016/j.procir.2018.03.309
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03242874v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2212827118304906</els_id><sourcerecordid>S2212827118304906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-589e344cb81e29b7c39233af2bef7baffd457875dae8dfd0cd58d5d3238d61523</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gYdcPeyaf9vNehBqsVYoeNFzyCazbUp3syRLod_eLCviybnM8HjvwfwQuqckp4QuH495H7xxIWeEypzwnJPqCs0YoyyTrKTXf-5btIjxSNKUgnDKZuhphV_0BaLTHdZ9atLmgAePW2_hhM1Bd3vASe71Xg_Od7iFUXSxjXfoptGnCIufPUdfm9fP9Tbbfby9r1e7zAghhqyQFXAhTC0psKouDa8Y57phNTRlrZvGiqKUZWE1SNtYYmwhbWE549IuacH4HD1MvQd9Un1wrQ4X5bVT29VOjRrhTDBZijNNXjF5TfAxBmh-A5SoEZc6qgmXGnGlqEq4Uux5ikH64-wgqGgcdAasC2AGZb37v-AbNqx0qg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Bayesian approach to model change propagation mechanisms</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mirdamadi, Shirin ; Addouche, Sid-Ali ; Zolghadri, Marc</creator><creatorcontrib>Mirdamadi, Shirin ; Addouche, Sid-Ali ; Zolghadri, Marc</creatorcontrib><description>Engineering Changes (EC) are often the answers the designers think of while dealing with new performance targets or customers needs and expectations, regarding functionality, aesthetics, security, etc. Engineering change management (ECM) techniques look to predict or control these consequences within an existing system or product, to limit the generated cost and required efforts to integrate such changes. Engineering change management (ECM) techniques look to predict or control these consequences within an existing system or product, to limit the generated cost and required efforts to integrate such changes. This paper addresses the issue of enhancing the ability of the ”change evaluation” through the suggested technique. We propose a methodology that covers change analysis and evaluation from change’s objective initialization to formulation of recommendation based on system engineering framework (ANSI/EIA-649 1998). We use a modeling technique based on influence diagrams able to integrate different uncertainty levels (on dependencies) in a unique model. It will be shown that the models offer the ability to analyze change impacts but also allow to synthesize the system. Finally, these results can be obtained in a very efficient way which gives the possibility of their use during a design meeting in a practical way at the very beginning of a change project and mainly to support go/no-go decision.</description><identifier>ISSN: 2212-8271</identifier><identifier>EISSN: 2212-8271</identifier><identifier>DOI: 10.1016/j.procir.2018.03.309</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bayesian network ; Change engineering ; Engineering Sciences ; System engineering</subject><ispartof>Procedia CIRP, 2018, Vol.70, p.1-6</ispartof><rights>2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-589e344cb81e29b7c39233af2bef7baffd457875dae8dfd0cd58d5d3238d61523</citedby><cites>FETCH-LOGICAL-c444t-589e344cb81e29b7c39233af2bef7baffd457875dae8dfd0cd58d5d3238d61523</cites><orcidid>0000-0002-4088-6526 ; 0000-0002-0377-2271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03242874$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mirdamadi, Shirin</creatorcontrib><creatorcontrib>Addouche, Sid-Ali</creatorcontrib><creatorcontrib>Zolghadri, Marc</creatorcontrib><title>A Bayesian approach to model change propagation mechanisms</title><title>Procedia CIRP</title><description>Engineering Changes (EC) are often the answers the designers think of while dealing with new performance targets or customers needs and expectations, regarding functionality, aesthetics, security, etc. Engineering change management (ECM) techniques look to predict or control these consequences within an existing system or product, to limit the generated cost and required efforts to integrate such changes. Engineering change management (ECM) techniques look to predict or control these consequences within an existing system or product, to limit the generated cost and required efforts to integrate such changes. This paper addresses the issue of enhancing the ability of the ”change evaluation” through the suggested technique. We propose a methodology that covers change analysis and evaluation from change’s objective initialization to formulation of recommendation based on system engineering framework (ANSI/EIA-649 1998). We use a modeling technique based on influence diagrams able to integrate different uncertainty levels (on dependencies) in a unique model. It will be shown that the models offer the ability to analyze change impacts but also allow to synthesize the system. Finally, these results can be obtained in a very efficient way which gives the possibility of their use during a design meeting in a practical way at the very beginning of a change project and mainly to support go/no-go decision.</description><subject>Bayesian network</subject><subject>Change engineering</subject><subject>Engineering Sciences</subject><subject>System engineering</subject><issn>2212-8271</issn><issn>2212-8271</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWGq_gYdcPeyaf9vNehBqsVYoeNFzyCazbUp3syRLod_eLCviybnM8HjvwfwQuqckp4QuH495H7xxIWeEypzwnJPqCs0YoyyTrKTXf-5btIjxSNKUgnDKZuhphV_0BaLTHdZ9atLmgAePW2_hhM1Bd3vASe71Xg_Od7iFUXSxjXfoptGnCIufPUdfm9fP9Tbbfby9r1e7zAghhqyQFXAhTC0psKouDa8Y57phNTRlrZvGiqKUZWE1SNtYYmwhbWE549IuacH4HD1MvQd9Un1wrQ4X5bVT29VOjRrhTDBZijNNXjF5TfAxBmh-A5SoEZc6qgmXGnGlqEq4Uux5ikH64-wgqGgcdAasC2AGZb37v-AbNqx0qg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Mirdamadi, Shirin</creator><creator>Addouche, Sid-Ali</creator><creator>Zolghadri, Marc</creator><general>Elsevier B.V</general><general>ELSEVIER</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4088-6526</orcidid><orcidid>https://orcid.org/0000-0002-0377-2271</orcidid></search><sort><creationdate>2018</creationdate><title>A Bayesian approach to model change propagation mechanisms</title><author>Mirdamadi, Shirin ; Addouche, Sid-Ali ; Zolghadri, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-589e344cb81e29b7c39233af2bef7baffd457875dae8dfd0cd58d5d3238d61523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian network</topic><topic>Change engineering</topic><topic>Engineering Sciences</topic><topic>System engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirdamadi, Shirin</creatorcontrib><creatorcontrib>Addouche, Sid-Ali</creatorcontrib><creatorcontrib>Zolghadri, Marc</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Procedia CIRP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mirdamadi, Shirin</au><au>Addouche, Sid-Ali</au><au>Zolghadri, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian approach to model change propagation mechanisms</atitle><jtitle>Procedia CIRP</jtitle><date>2018</date><risdate>2018</risdate><volume>70</volume><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2212-8271</issn><eissn>2212-8271</eissn><abstract>Engineering Changes (EC) are often the answers the designers think of while dealing with new performance targets or customers needs and expectations, regarding functionality, aesthetics, security, etc. Engineering change management (ECM) techniques look to predict or control these consequences within an existing system or product, to limit the generated cost and required efforts to integrate such changes. Engineering change management (ECM) techniques look to predict or control these consequences within an existing system or product, to limit the generated cost and required efforts to integrate such changes. This paper addresses the issue of enhancing the ability of the ”change evaluation” through the suggested technique. We propose a methodology that covers change analysis and evaluation from change’s objective initialization to formulation of recommendation based on system engineering framework (ANSI/EIA-649 1998). We use a modeling technique based on influence diagrams able to integrate different uncertainty levels (on dependencies) in a unique model. It will be shown that the models offer the ability to analyze change impacts but also allow to synthesize the system. Finally, these results can be obtained in a very efficient way which gives the possibility of their use during a design meeting in a practical way at the very beginning of a change project and mainly to support go/no-go decision.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.procir.2018.03.309</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4088-6526</orcidid><orcidid>https://orcid.org/0000-0002-0377-2271</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2212-8271
ispartof Procedia CIRP, 2018, Vol.70, p.1-6
issn 2212-8271
2212-8271
language eng
recordid cdi_hal_primary_oai_HAL_hal_03242874v1
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Bayesian network
Change engineering
Engineering Sciences
System engineering
title A Bayesian approach to model change propagation mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20approach%20to%20model%20change%20propagation%20mechanisms&rft.jtitle=Procedia%20CIRP&rft.au=Mirdamadi,%20Shirin&rft.date=2018&rft.volume=70&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2212-8271&rft.eissn=2212-8271&rft_id=info:doi/10.1016/j.procir.2018.03.309&rft_dat=%3Celsevier_hal_p%3ES2212827118304906%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2212827118304906&rfr_iscdi=true