Local strategies for improving the conditioning of the plane-wave Ultra-Weak Variational Formulation

•Numerical solution of the wave equation in the frequency domain.•Use of wave-based methods to avoid dispersion.•Cheap treatment of plane-wave discretization ill-conditioning.•Robust and efficient numerical solution of the Helmholtz equation.•Methods avoiding spurious resonances induced by the use o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2021-09, Vol.441, p.110449, Article 110449
Hauptverfasser: Barucq, Hélène, Bendali, Abderrahmane, Diaz, Julien, Tordeux, Sébastien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110449
container_title Journal of computational physics
container_volume 441
creator Barucq, Hélène
Bendali, Abderrahmane
Diaz, Julien
Tordeux, Sébastien
description •Numerical solution of the wave equation in the frequency domain.•Use of wave-based methods to avoid dispersion.•Cheap treatment of plane-wave discretization ill-conditioning.•Robust and efficient numerical solution of the Helmholtz equation.•Methods avoiding spurious resonances induced by the use of direct solvers. Element-wise techniques based on SVD or QR Decomposition completely get rid of the usual ill-conditioning inherent to the plane-wave discretizations of the Ultra-Weak Variational Formulation (UWVF) for the Helmholtz equation. Associated preconditioning strategies lead to very low condition numbers of the corresponding linear system matrices, without any limitation on the number of plane waves per element. In addition, some of these procedures have the advantage of considerably reducing the size of the final system to be solved without altering the accuracy of the numerical solution.
doi_str_mv 10.1016/j.jcp.2021.110449
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03235684v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999121003442</els_id><sourcerecordid>2551711569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-c36b8a20e168a4e8b74a80cfde237d106b6aebdd317ea72c866d575d652a02953</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhS0EEkvhB3CLxIlDlhkndhJxqipKkVbiQuFozdqT1iEbL3Z2K_49ToN67Gk0z9978jwh3iNsEVB_GraDPW4lSNwiQl13L8QGoYNSNqhfig3kl7LrOnwt3qQ0AECr6nYj3C5YGos0R5r5znMq-hALfzjGcPbTXTHfc2HD5Pzsw7QIoX_UjiNNXD7QmYvbMZvLX0y_i58UPS1kjrwO8XAaH7e34lVPY-J3_-eFuL3-8uPqptx9__rt6nJX2hrkXNpK71uSwKhbqrndNzW1YHvHsmocgt5r4r1zFTZMjbSt1k41ymklCWSnqgvxcc29p9Ecoz9Q_GsCeXNzuTOLBpWslG7rM2b2w8rmS_-cOM1mCKeYP56MVAobRKW7TOFK2RhSitw_xSKYpXgzmFy8WYo3a_HZ83n1cD717DmaZD1Plp2PbGfjgn_G_Q-J4YsY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551711569</pqid></control><display><type>article</type><title>Local strategies for improving the conditioning of the plane-wave Ultra-Weak Variational Formulation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Barucq, Hélène ; Bendali, Abderrahmane ; Diaz, Julien ; Tordeux, Sébastien</creator><creatorcontrib>Barucq, Hélène ; Bendali, Abderrahmane ; Diaz, Julien ; Tordeux, Sébastien</creatorcontrib><description>•Numerical solution of the wave equation in the frequency domain.•Use of wave-based methods to avoid dispersion.•Cheap treatment of plane-wave discretization ill-conditioning.•Robust and efficient numerical solution of the Helmholtz equation.•Methods avoiding spurious resonances induced by the use of direct solvers. Element-wise techniques based on SVD or QR Decomposition completely get rid of the usual ill-conditioning inherent to the plane-wave discretizations of the Ultra-Weak Variational Formulation (UWVF) for the Helmholtz equation. Associated preconditioning strategies lead to very low condition numbers of the corresponding linear system matrices, without any limitation on the number of plane waves per element. In addition, some of these procedures have the advantage of considerably reducing the size of the final system to be solved without altering the accuracy of the numerical solution.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2021.110449</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Computational physics ; Helmholtz ; Helmholtz equations ; Ill-conditioned problems (mathematics) ; Mathematical analysis ; Mathematics ; Matrices (mathematics) ; Numerical Analysis ; Plane waves ; Preconditioning ; SVD ; UWVF</subject><ispartof>Journal of computational physics, 2021-09, Vol.441, p.110449, Article 110449</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Sep 15, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-c36b8a20e168a4e8b74a80cfde237d106b6aebdd317ea72c866d575d652a02953</citedby><cites>FETCH-LOGICAL-c402t-c36b8a20e168a4e8b74a80cfde237d106b6aebdd317ea72c866d575d652a02953</cites><orcidid>0000-0002-6999-2824 ; 0000-0003-2788-1517 ; 0000-0002-1357-8472 ; 0000-0002-7949-3455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2021.110449$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-03235684$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barucq, Hélène</creatorcontrib><creatorcontrib>Bendali, Abderrahmane</creatorcontrib><creatorcontrib>Diaz, Julien</creatorcontrib><creatorcontrib>Tordeux, Sébastien</creatorcontrib><title>Local strategies for improving the conditioning of the plane-wave Ultra-Weak Variational Formulation</title><title>Journal of computational physics</title><description>•Numerical solution of the wave equation in the frequency domain.•Use of wave-based methods to avoid dispersion.•Cheap treatment of plane-wave discretization ill-conditioning.•Robust and efficient numerical solution of the Helmholtz equation.•Methods avoiding spurious resonances induced by the use of direct solvers. Element-wise techniques based on SVD or QR Decomposition completely get rid of the usual ill-conditioning inherent to the plane-wave discretizations of the Ultra-Weak Variational Formulation (UWVF) for the Helmholtz equation. Associated preconditioning strategies lead to very low condition numbers of the corresponding linear system matrices, without any limitation on the number of plane waves per element. In addition, some of these procedures have the advantage of considerably reducing the size of the final system to be solved without altering the accuracy of the numerical solution.</description><subject>Computational physics</subject><subject>Helmholtz</subject><subject>Helmholtz equations</subject><subject>Ill-conditioned problems (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Matrices (mathematics)</subject><subject>Numerical Analysis</subject><subject>Plane waves</subject><subject>Preconditioning</subject><subject>SVD</subject><subject>UWVF</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1DAQhS0EEkvhB3CLxIlDlhkndhJxqipKkVbiQuFozdqT1iEbL3Z2K_49ToN67Gk0z9978jwh3iNsEVB_GraDPW4lSNwiQl13L8QGoYNSNqhfig3kl7LrOnwt3qQ0AECr6nYj3C5YGos0R5r5znMq-hALfzjGcPbTXTHfc2HD5Pzsw7QIoX_UjiNNXD7QmYvbMZvLX0y_i58UPS1kjrwO8XAaH7e34lVPY-J3_-eFuL3-8uPqptx9__rt6nJX2hrkXNpK71uSwKhbqrndNzW1YHvHsmocgt5r4r1zFTZMjbSt1k41ymklCWSnqgvxcc29p9Ecoz9Q_GsCeXNzuTOLBpWslG7rM2b2w8rmS_-cOM1mCKeYP56MVAobRKW7TOFK2RhSitw_xSKYpXgzmFy8WYo3a_HZ83n1cD717DmaZD1Plp2PbGfjgn_G_Q-J4YsY</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Barucq, Hélène</creator><creator>Bendali, Abderrahmane</creator><creator>Diaz, Julien</creator><creator>Tordeux, Sébastien</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6999-2824</orcidid><orcidid>https://orcid.org/0000-0003-2788-1517</orcidid><orcidid>https://orcid.org/0000-0002-1357-8472</orcidid><orcidid>https://orcid.org/0000-0002-7949-3455</orcidid></search><sort><creationdate>20210915</creationdate><title>Local strategies for improving the conditioning of the plane-wave Ultra-Weak Variational Formulation</title><author>Barucq, Hélène ; Bendali, Abderrahmane ; Diaz, Julien ; Tordeux, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-c36b8a20e168a4e8b74a80cfde237d106b6aebdd317ea72c866d575d652a02953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational physics</topic><topic>Helmholtz</topic><topic>Helmholtz equations</topic><topic>Ill-conditioned problems (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Matrices (mathematics)</topic><topic>Numerical Analysis</topic><topic>Plane waves</topic><topic>Preconditioning</topic><topic>SVD</topic><topic>UWVF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barucq, Hélène</creatorcontrib><creatorcontrib>Bendali, Abderrahmane</creatorcontrib><creatorcontrib>Diaz, Julien</creatorcontrib><creatorcontrib>Tordeux, Sébastien</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barucq, Hélène</au><au>Bendali, Abderrahmane</au><au>Diaz, Julien</au><au>Tordeux, Sébastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local strategies for improving the conditioning of the plane-wave Ultra-Weak Variational Formulation</atitle><jtitle>Journal of computational physics</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>441</volume><spage>110449</spage><pages>110449-</pages><artnum>110449</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•Numerical solution of the wave equation in the frequency domain.•Use of wave-based methods to avoid dispersion.•Cheap treatment of plane-wave discretization ill-conditioning.•Robust and efficient numerical solution of the Helmholtz equation.•Methods avoiding spurious resonances induced by the use of direct solvers. Element-wise techniques based on SVD or QR Decomposition completely get rid of the usual ill-conditioning inherent to the plane-wave discretizations of the Ultra-Weak Variational Formulation (UWVF) for the Helmholtz equation. Associated preconditioning strategies lead to very low condition numbers of the corresponding linear system matrices, without any limitation on the number of plane waves per element. In addition, some of these procedures have the advantage of considerably reducing the size of the final system to be solved without altering the accuracy of the numerical solution.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2021.110449</doi><orcidid>https://orcid.org/0000-0002-6999-2824</orcidid><orcidid>https://orcid.org/0000-0003-2788-1517</orcidid><orcidid>https://orcid.org/0000-0002-1357-8472</orcidid><orcidid>https://orcid.org/0000-0002-7949-3455</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2021-09, Vol.441, p.110449, Article 110449
issn 0021-9991
1090-2716
language eng
recordid cdi_hal_primary_oai_HAL_hal_03235684v1
source ScienceDirect Journals (5 years ago - present)
subjects Computational physics
Helmholtz
Helmholtz equations
Ill-conditioned problems (mathematics)
Mathematical analysis
Mathematics
Matrices (mathematics)
Numerical Analysis
Plane waves
Preconditioning
SVD
UWVF
title Local strategies for improving the conditioning of the plane-wave Ultra-Weak Variational Formulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20strategies%20for%20improving%20the%20conditioning%20of%20the%20plane-wave%20Ultra-Weak%20Variational%20Formulation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Barucq,%20H%C3%A9l%C3%A8ne&rft.date=2021-09-15&rft.volume=441&rft.spage=110449&rft.pages=110449-&rft.artnum=110449&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2021.110449&rft_dat=%3Cproquest_hal_p%3E2551711569%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551711569&rft_id=info:pmid/&rft_els_id=S0021999121003442&rfr_iscdi=true