On a three-dimensional Compton scattering tomography system with fixed source

Compton scattering tomography is an emerging scanning technique with attractive applications in several fields such as non-destructive testing and medical imaging. In this paper, we study a modality in three dimensions that employs a fixed source and a single detector moving on a spherical surface....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2021-05, Vol.37 (5), p.54001
Hauptverfasser: Cebeiro, J, Tarpau, C, Morvidone, M A, Rubio, D, Nguyen, M K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 54001
container_title Inverse problems
container_volume 37
creator Cebeiro, J
Tarpau, C
Morvidone, M A
Rubio, D
Nguyen, M K
description Compton scattering tomography is an emerging scanning technique with attractive applications in several fields such as non-destructive testing and medical imaging. In this paper, we study a modality in three dimensions that employs a fixed source and a single detector moving on a spherical surface. We also study the Radon transform modeling the data that consists of integrals on toric surfaces. Using spherical harmonics we arrive to a generalized Abel’s type equation connecting the coefficients of the expansion of the data with those of the function. We show the uniqueness of its solution and so the invertibility of the toric Radon transform. We illustrate this through numerical reconstructions in three dimensions using a regularized approach.
doi_str_mv 10.1088/1361-6420/abf0f0
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03230894v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03230894v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-efb90306c1027080fb853ac768a085710120a3081c8a4e7489343688130c61553</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EEqWwM3plCH0vTmx3rCqgSEVdYLYc126MmriyzUf-PY2KOl3p6p47HELuER4RpJwh41jwqoSZbhw4uCCTc3VJJlByXtQc8ZrcpPQJgChRTMjbpqea5jZaW2x9Z_vkQ6_3dBm6Qw49TUbnbKPvdzSHLuyiPrQDTUPKtqM_PrfU-V-7pSl8RWNvyZXT-2Tv_nNKPp6f3perYr15eV0u1oUphciFdc0cGHCDUAqQ4BpZM20ElxpkLRCwBM1AopG6sqKSc1YxLiUyMBzrmk3Jw-m31Xt1iL7TcVBBe7VarNXYASuP_Lz6xuMWTlsTQ0rRujOAoEZ1avSkRk_qpI79AaHdYHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a three-dimensional Compton scattering tomography system with fixed source</title><source>Institute of Physics Journals</source><creator>Cebeiro, J ; Tarpau, C ; Morvidone, M A ; Rubio, D ; Nguyen, M K</creator><creatorcontrib>Cebeiro, J ; Tarpau, C ; Morvidone, M A ; Rubio, D ; Nguyen, M K</creatorcontrib><description>Compton scattering tomography is an emerging scanning technique with attractive applications in several fields such as non-destructive testing and medical imaging. In this paper, we study a modality in three dimensions that employs a fixed source and a single detector moving on a spherical surface. We also study the Radon transform modeling the data that consists of integrals on toric surfaces. Using spherical harmonics we arrive to a generalized Abel’s type equation connecting the coefficients of the expansion of the data with those of the function. We show the uniqueness of its solution and so the invertibility of the toric Radon transform. We illustrate this through numerical reconstructions in three dimensions using a regularized approach.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/1361-6420/abf0f0</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Analysis of PDEs ; Mathematics</subject><ispartof>Inverse problems, 2021-05, Vol.37 (5), p.54001</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-efb90306c1027080fb853ac768a085710120a3081c8a4e7489343688130c61553</citedby><cites>FETCH-LOGICAL-c277t-efb90306c1027080fb853ac768a085710120a3081c8a4e7489343688130c61553</cites><orcidid>0000-0002-8653-9490 ; 0000-0001-7180-1401 ; 0000-0002-6338-2830 ; 0000-0003-2070-4016 ; 0000-0003-1192-0980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03230894$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cebeiro, J</creatorcontrib><creatorcontrib>Tarpau, C</creatorcontrib><creatorcontrib>Morvidone, M A</creatorcontrib><creatorcontrib>Rubio, D</creatorcontrib><creatorcontrib>Nguyen, M K</creatorcontrib><title>On a three-dimensional Compton scattering tomography system with fixed source</title><title>Inverse problems</title><description>Compton scattering tomography is an emerging scanning technique with attractive applications in several fields such as non-destructive testing and medical imaging. In this paper, we study a modality in three dimensions that employs a fixed source and a single detector moving on a spherical surface. We also study the Radon transform modeling the data that consists of integrals on toric surfaces. Using spherical harmonics we arrive to a generalized Abel’s type equation connecting the coefficients of the expansion of the data with those of the function. We show the uniqueness of its solution and so the invertibility of the toric Radon transform. We illustrate this through numerical reconstructions in three dimensions using a regularized approach.</description><subject>Analysis of PDEs</subject><subject>Mathematics</subject><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAURS0EEqWwM3plCH0vTmx3rCqgSEVdYLYc126MmriyzUf-PY2KOl3p6p47HELuER4RpJwh41jwqoSZbhw4uCCTc3VJJlByXtQc8ZrcpPQJgChRTMjbpqea5jZaW2x9Z_vkQ6_3dBm6Qw49TUbnbKPvdzSHLuyiPrQDTUPKtqM_PrfU-V-7pSl8RWNvyZXT-2Tv_nNKPp6f3perYr15eV0u1oUphciFdc0cGHCDUAqQ4BpZM20ElxpkLRCwBM1AopG6sqKSc1YxLiUyMBzrmk3Jw-m31Xt1iL7TcVBBe7VarNXYASuP_Lz6xuMWTlsTQ0rRujOAoEZ1avSkRk_qpI79AaHdYHw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Cebeiro, J</creator><creator>Tarpau, C</creator><creator>Morvidone, M A</creator><creator>Rubio, D</creator><creator>Nguyen, M K</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8653-9490</orcidid><orcidid>https://orcid.org/0000-0001-7180-1401</orcidid><orcidid>https://orcid.org/0000-0002-6338-2830</orcidid><orcidid>https://orcid.org/0000-0003-2070-4016</orcidid><orcidid>https://orcid.org/0000-0003-1192-0980</orcidid></search><sort><creationdate>20210501</creationdate><title>On a three-dimensional Compton scattering tomography system with fixed source</title><author>Cebeiro, J ; Tarpau, C ; Morvidone, M A ; Rubio, D ; Nguyen, M K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-efb90306c1027080fb853ac768a085710120a3081c8a4e7489343688130c61553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis of PDEs</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cebeiro, J</creatorcontrib><creatorcontrib>Tarpau, C</creatorcontrib><creatorcontrib>Morvidone, M A</creatorcontrib><creatorcontrib>Rubio, D</creatorcontrib><creatorcontrib>Nguyen, M K</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cebeiro, J</au><au>Tarpau, C</au><au>Morvidone, M A</au><au>Rubio, D</au><au>Nguyen, M K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a three-dimensional Compton scattering tomography system with fixed source</atitle><jtitle>Inverse problems</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>37</volume><issue>5</issue><spage>54001</spage><pages>54001-</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><abstract>Compton scattering tomography is an emerging scanning technique with attractive applications in several fields such as non-destructive testing and medical imaging. In this paper, we study a modality in three dimensions that employs a fixed source and a single detector moving on a spherical surface. We also study the Radon transform modeling the data that consists of integrals on toric surfaces. Using spherical harmonics we arrive to a generalized Abel’s type equation connecting the coefficients of the expansion of the data with those of the function. We show the uniqueness of its solution and so the invertibility of the toric Radon transform. We illustrate this through numerical reconstructions in three dimensions using a regularized approach.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6420/abf0f0</doi><orcidid>https://orcid.org/0000-0002-8653-9490</orcidid><orcidid>https://orcid.org/0000-0001-7180-1401</orcidid><orcidid>https://orcid.org/0000-0002-6338-2830</orcidid><orcidid>https://orcid.org/0000-0003-2070-4016</orcidid><orcidid>https://orcid.org/0000-0003-1192-0980</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0266-5611
ispartof Inverse problems, 2021-05, Vol.37 (5), p.54001
issn 0266-5611
1361-6420
language eng
recordid cdi_hal_primary_oai_HAL_hal_03230894v1
source Institute of Physics Journals
subjects Analysis of PDEs
Mathematics
title On a three-dimensional Compton scattering tomography system with fixed source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20three-dimensional%20Compton%20scattering%20tomography%20system%20with%20fixed%20source&rft.jtitle=Inverse%20problems&rft.au=Cebeiro,%20J&rft.date=2021-05-01&rft.volume=37&rft.issue=5&rft.spage=54001&rft.pages=54001-&rft.issn=0266-5611&rft.eissn=1361-6420&rft_id=info:doi/10.1088/1361-6420/abf0f0&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03230894v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true