On a three-dimensional Compton scattering tomography system with fixed source
Compton scattering tomography is an emerging scanning technique with attractive applications in several fields such as non-destructive testing and medical imaging. In this paper, we study a modality in three dimensions that employs a fixed source and a single detector moving on a spherical surface....
Gespeichert in:
Veröffentlicht in: | Inverse problems 2021-05, Vol.37 (5), p.54001 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 54001 |
container_title | Inverse problems |
container_volume | 37 |
creator | Cebeiro, J Tarpau, C Morvidone, M A Rubio, D Nguyen, M K |
description | Compton scattering tomography is an emerging scanning technique with attractive applications in several fields such as non-destructive testing and medical imaging. In this paper, we study a modality in three dimensions that employs a fixed source and a single detector moving on a spherical surface. We also study the Radon transform modeling the data that consists of integrals on toric surfaces. Using spherical harmonics we arrive to a generalized Abel’s type equation connecting the coefficients of the expansion of the data with those of the function. We show the uniqueness of its solution and so the invertibility of the toric Radon transform. We illustrate this through numerical reconstructions in three dimensions using a regularized approach. |
doi_str_mv | 10.1088/1361-6420/abf0f0 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03230894v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03230894v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-efb90306c1027080fb853ac768a085710120a3081c8a4e7489343688130c61553</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EEqWwM3plCH0vTmx3rCqgSEVdYLYc126MmriyzUf-PY2KOl3p6p47HELuER4RpJwh41jwqoSZbhw4uCCTc3VJJlByXtQc8ZrcpPQJgChRTMjbpqea5jZaW2x9Z_vkQ6_3dBm6Qw49TUbnbKPvdzSHLuyiPrQDTUPKtqM_PrfU-V-7pSl8RWNvyZXT-2Tv_nNKPp6f3perYr15eV0u1oUphciFdc0cGHCDUAqQ4BpZM20ElxpkLRCwBM1AopG6sqKSc1YxLiUyMBzrmk3Jw-m31Xt1iL7TcVBBe7VarNXYASuP_Lz6xuMWTlsTQ0rRujOAoEZ1avSkRk_qpI79AaHdYHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a three-dimensional Compton scattering tomography system with fixed source</title><source>Institute of Physics Journals</source><creator>Cebeiro, J ; Tarpau, C ; Morvidone, M A ; Rubio, D ; Nguyen, M K</creator><creatorcontrib>Cebeiro, J ; Tarpau, C ; Morvidone, M A ; Rubio, D ; Nguyen, M K</creatorcontrib><description>Compton scattering tomography is an emerging scanning technique with attractive applications in several fields such as non-destructive testing and medical imaging. In this paper, we study a modality in three dimensions that employs a fixed source and a single detector moving on a spherical surface. We also study the Radon transform modeling the data that consists of integrals on toric surfaces. Using spherical harmonics we arrive to a generalized Abel’s type equation connecting the coefficients of the expansion of the data with those of the function. We show the uniqueness of its solution and so the invertibility of the toric Radon transform. We illustrate this through numerical reconstructions in three dimensions using a regularized approach.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/1361-6420/abf0f0</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Analysis of PDEs ; Mathematics</subject><ispartof>Inverse problems, 2021-05, Vol.37 (5), p.54001</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-efb90306c1027080fb853ac768a085710120a3081c8a4e7489343688130c61553</citedby><cites>FETCH-LOGICAL-c277t-efb90306c1027080fb853ac768a085710120a3081c8a4e7489343688130c61553</cites><orcidid>0000-0002-8653-9490 ; 0000-0001-7180-1401 ; 0000-0002-6338-2830 ; 0000-0003-2070-4016 ; 0000-0003-1192-0980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03230894$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cebeiro, J</creatorcontrib><creatorcontrib>Tarpau, C</creatorcontrib><creatorcontrib>Morvidone, M A</creatorcontrib><creatorcontrib>Rubio, D</creatorcontrib><creatorcontrib>Nguyen, M K</creatorcontrib><title>On a three-dimensional Compton scattering tomography system with fixed source</title><title>Inverse problems</title><description>Compton scattering tomography is an emerging scanning technique with attractive applications in several fields such as non-destructive testing and medical imaging. In this paper, we study a modality in three dimensions that employs a fixed source and a single detector moving on a spherical surface. We also study the Radon transform modeling the data that consists of integrals on toric surfaces. Using spherical harmonics we arrive to a generalized Abel’s type equation connecting the coefficients of the expansion of the data with those of the function. We show the uniqueness of its solution and so the invertibility of the toric Radon transform. We illustrate this through numerical reconstructions in three dimensions using a regularized approach.</description><subject>Analysis of PDEs</subject><subject>Mathematics</subject><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAURS0EEqWwM3plCH0vTmx3rCqgSEVdYLYc126MmriyzUf-PY2KOl3p6p47HELuER4RpJwh41jwqoSZbhw4uCCTc3VJJlByXtQc8ZrcpPQJgChRTMjbpqea5jZaW2x9Z_vkQ6_3dBm6Qw49TUbnbKPvdzSHLuyiPrQDTUPKtqM_PrfU-V-7pSl8RWNvyZXT-2Tv_nNKPp6f3perYr15eV0u1oUphciFdc0cGHCDUAqQ4BpZM20ElxpkLRCwBM1AopG6sqKSc1YxLiUyMBzrmk3Jw-m31Xt1iL7TcVBBe7VarNXYASuP_Lz6xuMWTlsTQ0rRujOAoEZ1avSkRk_qpI79AaHdYHw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Cebeiro, J</creator><creator>Tarpau, C</creator><creator>Morvidone, M A</creator><creator>Rubio, D</creator><creator>Nguyen, M K</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8653-9490</orcidid><orcidid>https://orcid.org/0000-0001-7180-1401</orcidid><orcidid>https://orcid.org/0000-0002-6338-2830</orcidid><orcidid>https://orcid.org/0000-0003-2070-4016</orcidid><orcidid>https://orcid.org/0000-0003-1192-0980</orcidid></search><sort><creationdate>20210501</creationdate><title>On a three-dimensional Compton scattering tomography system with fixed source</title><author>Cebeiro, J ; Tarpau, C ; Morvidone, M A ; Rubio, D ; Nguyen, M K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-efb90306c1027080fb853ac768a085710120a3081c8a4e7489343688130c61553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis of PDEs</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cebeiro, J</creatorcontrib><creatorcontrib>Tarpau, C</creatorcontrib><creatorcontrib>Morvidone, M A</creatorcontrib><creatorcontrib>Rubio, D</creatorcontrib><creatorcontrib>Nguyen, M K</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cebeiro, J</au><au>Tarpau, C</au><au>Morvidone, M A</au><au>Rubio, D</au><au>Nguyen, M K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a three-dimensional Compton scattering tomography system with fixed source</atitle><jtitle>Inverse problems</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>37</volume><issue>5</issue><spage>54001</spage><pages>54001-</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><abstract>Compton scattering tomography is an emerging scanning technique with attractive applications in several fields such as non-destructive testing and medical imaging. In this paper, we study a modality in three dimensions that employs a fixed source and a single detector moving on a spherical surface. We also study the Radon transform modeling the data that consists of integrals on toric surfaces. Using spherical harmonics we arrive to a generalized Abel’s type equation connecting the coefficients of the expansion of the data with those of the function. We show the uniqueness of its solution and so the invertibility of the toric Radon transform. We illustrate this through numerical reconstructions in three dimensions using a regularized approach.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6420/abf0f0</doi><orcidid>https://orcid.org/0000-0002-8653-9490</orcidid><orcidid>https://orcid.org/0000-0001-7180-1401</orcidid><orcidid>https://orcid.org/0000-0002-6338-2830</orcidid><orcidid>https://orcid.org/0000-0003-2070-4016</orcidid><orcidid>https://orcid.org/0000-0003-1192-0980</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-5611 |
ispartof | Inverse problems, 2021-05, Vol.37 (5), p.54001 |
issn | 0266-5611 1361-6420 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03230894v1 |
source | Institute of Physics Journals |
subjects | Analysis of PDEs Mathematics |
title | On a three-dimensional Compton scattering tomography system with fixed source |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20three-dimensional%20Compton%20scattering%20tomography%20system%20with%20fixed%20source&rft.jtitle=Inverse%20problems&rft.au=Cebeiro,%20J&rft.date=2021-05-01&rft.volume=37&rft.issue=5&rft.spage=54001&rft.pages=54001-&rft.issn=0266-5611&rft.eissn=1361-6420&rft_id=info:doi/10.1088/1361-6420/abf0f0&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03230894v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |