Bragg coherent imaging of nanoprecipitates: role of superstructure reflections
Coherent precipitation of ordered phases is responsible for providing exceptional high‐temperature mechanical properties in a wide range of compositionally complex alloys. Ordered phases are also essential to enhance the magnetic or catalytic properties of alloyed nanoparticles. The present work aim...
Gespeichert in:
Veröffentlicht in: | Journal of applied crystallography 2020-10, Vol.53 (5), p.1353-1369 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1369 |
---|---|
container_issue | 5 |
container_start_page | 1353 |
container_title | Journal of applied crystallography |
container_volume | 53 |
creator | Dupraz, Maxime Leake, Steven J. Richard, Marie-Ingrid |
description | Coherent precipitation of ordered phases is responsible for providing exceptional high‐temperature mechanical properties in a wide range of compositionally complex alloys. Ordered phases are also essential to enhance the magnetic or catalytic properties of alloyed nanoparticles. The present work aims to demonstrate the relevance of Bragg coherent diffraction imaging (BCDI) for studying bulk and thin‐film samples or isolated nanoparticles containing coherent nanoprecipitates/ordered phases. The structures of crystals of a few tens of nanometres in size are modelled with realistic interatomic potentials and are relaxed after introduction of coherent ordered nanoprecipitates. Diffraction patterns from fundamental and superstructure reflections are calculated in the kinematic approximation and used as input to retrieve the strain fields using algorithmic inversion. First, the case of single nanoprecipitates is tackled and it is shown that the strain field distribution from the ordered phase is retrieved very accurately. Then, the influence of the order parameter S on the strain field retrieved from the superstructure reflections is investigated. A very accurate strain distribution can be retrieved for partially ordered phases with large and inhomogeneous strains. Subsequently, the relevance of BCDI is evaluated for the study of systems containing many precipitates, and it is demonstrated that the technique is relevant for such systems. Finally, the experimental feasibility of using BCDI to image ordered phases is discussed in the light of the new possibilities offered by fourth‐generation synchrotron sources.
Detailed numerical simulations are presented, aimed at demonstrating the relevance of Bragg coherent diffraction imaging for elucidating coherent nanoprecipitates and more generally chemically ordered phases |
doi_str_mv | 10.1107/S1600576720011358 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03228501v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448299310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4009-4f394da350b18dddf910aa90fd1fd365f87d5fef4d2f147ada88fe972b702a7d3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwANwiceIQWNtJHXNrq0JBVZH4OVtubKepQhzsBNS3x1EQQuLAaVez36xmF6FzDFcYA7t-xhOAlE0YAcCYptkBGvVS3GuHv_pjdOL9LkABJSO0njlZFFFut9rpuo3KN1mUdRFZE9Wyto3TedmUrWy1v4mcrXQ_8V2jnW9dl7ed05HTptJ5W9ran6IjIyuvz77rGL3eLl7my3j1eHc_n67iPAHgcWIoT5SkKWxwppQyHIOUHIzCRtFJajKmUqNNoojBCZNKZpnRnJENAyKZomN0Oezdyko0LqR2e2FlKZbTleg1oIRkKeAPHNiLgW2cfe-0b8XOdq4O8QRJkoxwTjEECg9U7qz34aSftRhE_2Lx58XBwwfPZ1np_f8G8TB_IutZShinXzdWfqI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448299310</pqid></control><display><type>article</type><title>Bragg coherent imaging of nanoprecipitates: role of superstructure reflections</title><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Dupraz, Maxime ; Leake, Steven J. ; Richard, Marie-Ingrid</creator><creatorcontrib>Dupraz, Maxime ; Leake, Steven J. ; Richard, Marie-Ingrid</creatorcontrib><description>Coherent precipitation of ordered phases is responsible for providing exceptional high‐temperature mechanical properties in a wide range of compositionally complex alloys. Ordered phases are also essential to enhance the magnetic or catalytic properties of alloyed nanoparticles. The present work aims to demonstrate the relevance of Bragg coherent diffraction imaging (BCDI) for studying bulk and thin‐film samples or isolated nanoparticles containing coherent nanoprecipitates/ordered phases. The structures of crystals of a few tens of nanometres in size are modelled with realistic interatomic potentials and are relaxed after introduction of coherent ordered nanoprecipitates. Diffraction patterns from fundamental and superstructure reflections are calculated in the kinematic approximation and used as input to retrieve the strain fields using algorithmic inversion. First, the case of single nanoprecipitates is tackled and it is shown that the strain field distribution from the ordered phase is retrieved very accurately. Then, the influence of the order parameter S on the strain field retrieved from the superstructure reflections is investigated. A very accurate strain distribution can be retrieved for partially ordered phases with large and inhomogeneous strains. Subsequently, the relevance of BCDI is evaluated for the study of systems containing many precipitates, and it is demonstrated that the technique is relevant for such systems. Finally, the experimental feasibility of using BCDI to image ordered phases is discussed in the light of the new possibilities offered by fourth‐generation synchrotron sources.
Detailed numerical simulations are presented, aimed at demonstrating the relevance of Bragg coherent diffraction imaging for elucidating coherent nanoprecipitates and more generally chemically ordered phases</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576720011358</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Alloying ; Bragg coherent diffraction imaging ; chemical ordering ; Coherence ; Condensed Matter ; Crystal structure ; Crystals ; Diffraction ; Diffraction patterns ; Magnetic properties ; Materials Science ; Mechanical properties ; molecular statics ; Nanoalloys ; Nanoparticles ; nanoprecipitates ; Order parameters ; Phases ; Physics ; Precipitates ; Strain distribution ; superstructure reflections ; Superstructures ; Synchrotrons</subject><ispartof>Journal of applied crystallography, 2020-10, Vol.53 (5), p.1353-1369</ispartof><rights>International Union of Crystallography, 2020</rights><rights>Copyright Blackwell Publishing Ltd. Oct 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4009-4f394da350b18dddf910aa90fd1fd365f87d5fef4d2f147ada88fe972b702a7d3</citedby><cites>FETCH-LOGICAL-c4009-4f394da350b18dddf910aa90fd1fd365f87d5fef4d2f147ada88fe972b702a7d3</cites><orcidid>0000-0003-3213-6255 ; 0000-0002-8172-3141 ; 0000-0003-1640-0386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1600576720011358$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1600576720011358$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03228501$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dupraz, Maxime</creatorcontrib><creatorcontrib>Leake, Steven J.</creatorcontrib><creatorcontrib>Richard, Marie-Ingrid</creatorcontrib><title>Bragg coherent imaging of nanoprecipitates: role of superstructure reflections</title><title>Journal of applied crystallography</title><description>Coherent precipitation of ordered phases is responsible for providing exceptional high‐temperature mechanical properties in a wide range of compositionally complex alloys. Ordered phases are also essential to enhance the magnetic or catalytic properties of alloyed nanoparticles. The present work aims to demonstrate the relevance of Bragg coherent diffraction imaging (BCDI) for studying bulk and thin‐film samples or isolated nanoparticles containing coherent nanoprecipitates/ordered phases. The structures of crystals of a few tens of nanometres in size are modelled with realistic interatomic potentials and are relaxed after introduction of coherent ordered nanoprecipitates. Diffraction patterns from fundamental and superstructure reflections are calculated in the kinematic approximation and used as input to retrieve the strain fields using algorithmic inversion. First, the case of single nanoprecipitates is tackled and it is shown that the strain field distribution from the ordered phase is retrieved very accurately. Then, the influence of the order parameter S on the strain field retrieved from the superstructure reflections is investigated. A very accurate strain distribution can be retrieved for partially ordered phases with large and inhomogeneous strains. Subsequently, the relevance of BCDI is evaluated for the study of systems containing many precipitates, and it is demonstrated that the technique is relevant for such systems. Finally, the experimental feasibility of using BCDI to image ordered phases is discussed in the light of the new possibilities offered by fourth‐generation synchrotron sources.
Detailed numerical simulations are presented, aimed at demonstrating the relevance of Bragg coherent diffraction imaging for elucidating coherent nanoprecipitates and more generally chemically ordered phases</description><subject>Alloying</subject><subject>Bragg coherent diffraction imaging</subject><subject>chemical ordering</subject><subject>Coherence</subject><subject>Condensed Matter</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Diffraction</subject><subject>Diffraction patterns</subject><subject>Magnetic properties</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>molecular statics</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>nanoprecipitates</subject><subject>Order parameters</subject><subject>Phases</subject><subject>Physics</subject><subject>Precipitates</subject><subject>Strain distribution</subject><subject>superstructure reflections</subject><subject>Superstructures</subject><subject>Synchrotrons</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwANwiceIQWNtJHXNrq0JBVZH4OVtubKepQhzsBNS3x1EQQuLAaVez36xmF6FzDFcYA7t-xhOAlE0YAcCYptkBGvVS3GuHv_pjdOL9LkABJSO0njlZFFFut9rpuo3KN1mUdRFZE9Wyto3TedmUrWy1v4mcrXQ_8V2jnW9dl7ed05HTptJ5W9ran6IjIyuvz77rGL3eLl7my3j1eHc_n67iPAHgcWIoT5SkKWxwppQyHIOUHIzCRtFJajKmUqNNoojBCZNKZpnRnJENAyKZomN0Oezdyko0LqR2e2FlKZbTleg1oIRkKeAPHNiLgW2cfe-0b8XOdq4O8QRJkoxwTjEECg9U7qz34aSftRhE_2Lx58XBwwfPZ1np_f8G8TB_IutZShinXzdWfqI</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Dupraz, Maxime</creator><creator>Leake, Steven J.</creator><creator>Richard, Marie-Ingrid</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3213-6255</orcidid><orcidid>https://orcid.org/0000-0002-8172-3141</orcidid><orcidid>https://orcid.org/0000-0003-1640-0386</orcidid></search><sort><creationdate>202010</creationdate><title>Bragg coherent imaging of nanoprecipitates: role of superstructure reflections</title><author>Dupraz, Maxime ; Leake, Steven J. ; Richard, Marie-Ingrid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4009-4f394da350b18dddf910aa90fd1fd365f87d5fef4d2f147ada88fe972b702a7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloying</topic><topic>Bragg coherent diffraction imaging</topic><topic>chemical ordering</topic><topic>Coherence</topic><topic>Condensed Matter</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Diffraction</topic><topic>Diffraction patterns</topic><topic>Magnetic properties</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>molecular statics</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>nanoprecipitates</topic><topic>Order parameters</topic><topic>Phases</topic><topic>Physics</topic><topic>Precipitates</topic><topic>Strain distribution</topic><topic>superstructure reflections</topic><topic>Superstructures</topic><topic>Synchrotrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dupraz, Maxime</creatorcontrib><creatorcontrib>Leake, Steven J.</creatorcontrib><creatorcontrib>Richard, Marie-Ingrid</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dupraz, Maxime</au><au>Leake, Steven J.</au><au>Richard, Marie-Ingrid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bragg coherent imaging of nanoprecipitates: role of superstructure reflections</atitle><jtitle>Journal of applied crystallography</jtitle><date>2020-10</date><risdate>2020</risdate><volume>53</volume><issue>5</issue><spage>1353</spage><epage>1369</epage><pages>1353-1369</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>Coherent precipitation of ordered phases is responsible for providing exceptional high‐temperature mechanical properties in a wide range of compositionally complex alloys. Ordered phases are also essential to enhance the magnetic or catalytic properties of alloyed nanoparticles. The present work aims to demonstrate the relevance of Bragg coherent diffraction imaging (BCDI) for studying bulk and thin‐film samples or isolated nanoparticles containing coherent nanoprecipitates/ordered phases. The structures of crystals of a few tens of nanometres in size are modelled with realistic interatomic potentials and are relaxed after introduction of coherent ordered nanoprecipitates. Diffraction patterns from fundamental and superstructure reflections are calculated in the kinematic approximation and used as input to retrieve the strain fields using algorithmic inversion. First, the case of single nanoprecipitates is tackled and it is shown that the strain field distribution from the ordered phase is retrieved very accurately. Then, the influence of the order parameter S on the strain field retrieved from the superstructure reflections is investigated. A very accurate strain distribution can be retrieved for partially ordered phases with large and inhomogeneous strains. Subsequently, the relevance of BCDI is evaluated for the study of systems containing many precipitates, and it is demonstrated that the technique is relevant for such systems. Finally, the experimental feasibility of using BCDI to image ordered phases is discussed in the light of the new possibilities offered by fourth‐generation synchrotron sources.
Detailed numerical simulations are presented, aimed at demonstrating the relevance of Bragg coherent diffraction imaging for elucidating coherent nanoprecipitates and more generally chemically ordered phases</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><doi>10.1107/S1600576720011358</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3213-6255</orcidid><orcidid>https://orcid.org/0000-0002-8172-3141</orcidid><orcidid>https://orcid.org/0000-0003-1640-0386</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1600-5767 |
ispartof | Journal of applied crystallography, 2020-10, Vol.53 (5), p.1353-1369 |
issn | 1600-5767 0021-8898 1600-5767 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03228501v1 |
source | Wiley Online Library All Journals; Alma/SFX Local Collection |
subjects | Alloying Bragg coherent diffraction imaging chemical ordering Coherence Condensed Matter Crystal structure Crystals Diffraction Diffraction patterns Magnetic properties Materials Science Mechanical properties molecular statics Nanoalloys Nanoparticles nanoprecipitates Order parameters Phases Physics Precipitates Strain distribution superstructure reflections Superstructures Synchrotrons |
title | Bragg coherent imaging of nanoprecipitates: role of superstructure reflections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bragg%20coherent%20imaging%20of%20nanoprecipitates:%20role%20of%20superstructure%20reflections&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Dupraz,%20Maxime&rft.date=2020-10&rft.volume=53&rft.issue=5&rft.spage=1353&rft.epage=1369&rft.pages=1353-1369&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576720011358&rft_dat=%3Cproquest_hal_p%3E2448299310%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448299310&rft_id=info:pmid/&rfr_iscdi=true |