Bragg coherent imaging of nanoprecipitates: role of superstructure reflections

Coherent precipitation of ordered phases is responsible for providing exceptional high‐temperature mechanical properties in a wide range of compositionally complex alloys. Ordered phases are also essential to enhance the magnetic or catalytic properties of alloyed nanoparticles. The present work aim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography 2020-10, Vol.53 (5), p.1353-1369
Hauptverfasser: Dupraz, Maxime, Leake, Steven J., Richard, Marie-Ingrid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1369
container_issue 5
container_start_page 1353
container_title Journal of applied crystallography
container_volume 53
creator Dupraz, Maxime
Leake, Steven J.
Richard, Marie-Ingrid
description Coherent precipitation of ordered phases is responsible for providing exceptional high‐temperature mechanical properties in a wide range of compositionally complex alloys. Ordered phases are also essential to enhance the magnetic or catalytic properties of alloyed nanoparticles. The present work aims to demonstrate the relevance of Bragg coherent diffraction imaging (BCDI) for studying bulk and thin‐film samples or isolated nanoparticles containing coherent nanoprecipitates/ordered phases. The structures of crystals of a few tens of nanometres in size are modelled with realistic interatomic potentials and are relaxed after introduction of coherent ordered nanoprecipitates. Diffraction patterns from fundamental and superstructure reflections are calculated in the kinematic approximation and used as input to retrieve the strain fields using algorithmic inversion. First, the case of single nanoprecipitates is tackled and it is shown that the strain field distribution from the ordered phase is retrieved very accurately. Then, the influence of the order parameter S on the strain field retrieved from the superstructure reflections is investigated. A very accurate strain distribution can be retrieved for partially ordered phases with large and inhomogeneous strains. Subsequently, the relevance of BCDI is evaluated for the study of systems containing many precipitates, and it is demonstrated that the technique is relevant for such systems. Finally, the experimental feasibility of using BCDI to image ordered phases is discussed in the light of the new possibilities offered by fourth‐generation synchrotron sources. Detailed numerical simulations are presented, aimed at demonstrating the relevance of Bragg coherent diffraction imaging for elucidating coherent nanoprecipitates and more generally chemically ordered phases
doi_str_mv 10.1107/S1600576720011358
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03228501v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448299310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4009-4f394da350b18dddf910aa90fd1fd365f87d5fef4d2f147ada88fe972b702a7d3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwANwiceIQWNtJHXNrq0JBVZH4OVtubKepQhzsBNS3x1EQQuLAaVez36xmF6FzDFcYA7t-xhOAlE0YAcCYptkBGvVS3GuHv_pjdOL9LkABJSO0njlZFFFut9rpuo3KN1mUdRFZE9Wyto3TedmUrWy1v4mcrXQ_8V2jnW9dl7ed05HTptJ5W9ran6IjIyuvz77rGL3eLl7my3j1eHc_n67iPAHgcWIoT5SkKWxwppQyHIOUHIzCRtFJajKmUqNNoojBCZNKZpnRnJENAyKZomN0Oezdyko0LqR2e2FlKZbTleg1oIRkKeAPHNiLgW2cfe-0b8XOdq4O8QRJkoxwTjEECg9U7qz34aSftRhE_2Lx58XBwwfPZ1np_f8G8TB_IutZShinXzdWfqI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448299310</pqid></control><display><type>article</type><title>Bragg coherent imaging of nanoprecipitates: role of superstructure reflections</title><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Dupraz, Maxime ; Leake, Steven J. ; Richard, Marie-Ingrid</creator><creatorcontrib>Dupraz, Maxime ; Leake, Steven J. ; Richard, Marie-Ingrid</creatorcontrib><description>Coherent precipitation of ordered phases is responsible for providing exceptional high‐temperature mechanical properties in a wide range of compositionally complex alloys. Ordered phases are also essential to enhance the magnetic or catalytic properties of alloyed nanoparticles. The present work aims to demonstrate the relevance of Bragg coherent diffraction imaging (BCDI) for studying bulk and thin‐film samples or isolated nanoparticles containing coherent nanoprecipitates/ordered phases. The structures of crystals of a few tens of nanometres in size are modelled with realistic interatomic potentials and are relaxed after introduction of coherent ordered nanoprecipitates. Diffraction patterns from fundamental and superstructure reflections are calculated in the kinematic approximation and used as input to retrieve the strain fields using algorithmic inversion. First, the case of single nanoprecipitates is tackled and it is shown that the strain field distribution from the ordered phase is retrieved very accurately. Then, the influence of the order parameter S on the strain field retrieved from the superstructure reflections is investigated. A very accurate strain distribution can be retrieved for partially ordered phases with large and inhomogeneous strains. Subsequently, the relevance of BCDI is evaluated for the study of systems containing many precipitates, and it is demonstrated that the technique is relevant for such systems. Finally, the experimental feasibility of using BCDI to image ordered phases is discussed in the light of the new possibilities offered by fourth‐generation synchrotron sources. Detailed numerical simulations are presented, aimed at demonstrating the relevance of Bragg coherent diffraction imaging for elucidating coherent nanoprecipitates and more generally chemically ordered phases</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576720011358</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Alloying ; Bragg coherent diffraction imaging ; chemical ordering ; Coherence ; Condensed Matter ; Crystal structure ; Crystals ; Diffraction ; Diffraction patterns ; Magnetic properties ; Materials Science ; Mechanical properties ; molecular statics ; Nanoalloys ; Nanoparticles ; nanoprecipitates ; Order parameters ; Phases ; Physics ; Precipitates ; Strain distribution ; superstructure reflections ; Superstructures ; Synchrotrons</subject><ispartof>Journal of applied crystallography, 2020-10, Vol.53 (5), p.1353-1369</ispartof><rights>International Union of Crystallography, 2020</rights><rights>Copyright Blackwell Publishing Ltd. Oct 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4009-4f394da350b18dddf910aa90fd1fd365f87d5fef4d2f147ada88fe972b702a7d3</citedby><cites>FETCH-LOGICAL-c4009-4f394da350b18dddf910aa90fd1fd365f87d5fef4d2f147ada88fe972b702a7d3</cites><orcidid>0000-0003-3213-6255 ; 0000-0002-8172-3141 ; 0000-0003-1640-0386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1600576720011358$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1600576720011358$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03228501$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dupraz, Maxime</creatorcontrib><creatorcontrib>Leake, Steven J.</creatorcontrib><creatorcontrib>Richard, Marie-Ingrid</creatorcontrib><title>Bragg coherent imaging of nanoprecipitates: role of superstructure reflections</title><title>Journal of applied crystallography</title><description>Coherent precipitation of ordered phases is responsible for providing exceptional high‐temperature mechanical properties in a wide range of compositionally complex alloys. Ordered phases are also essential to enhance the magnetic or catalytic properties of alloyed nanoparticles. The present work aims to demonstrate the relevance of Bragg coherent diffraction imaging (BCDI) for studying bulk and thin‐film samples or isolated nanoparticles containing coherent nanoprecipitates/ordered phases. The structures of crystals of a few tens of nanometres in size are modelled with realistic interatomic potentials and are relaxed after introduction of coherent ordered nanoprecipitates. Diffraction patterns from fundamental and superstructure reflections are calculated in the kinematic approximation and used as input to retrieve the strain fields using algorithmic inversion. First, the case of single nanoprecipitates is tackled and it is shown that the strain field distribution from the ordered phase is retrieved very accurately. Then, the influence of the order parameter S on the strain field retrieved from the superstructure reflections is investigated. A very accurate strain distribution can be retrieved for partially ordered phases with large and inhomogeneous strains. Subsequently, the relevance of BCDI is evaluated for the study of systems containing many precipitates, and it is demonstrated that the technique is relevant for such systems. Finally, the experimental feasibility of using BCDI to image ordered phases is discussed in the light of the new possibilities offered by fourth‐generation synchrotron sources. Detailed numerical simulations are presented, aimed at demonstrating the relevance of Bragg coherent diffraction imaging for elucidating coherent nanoprecipitates and more generally chemically ordered phases</description><subject>Alloying</subject><subject>Bragg coherent diffraction imaging</subject><subject>chemical ordering</subject><subject>Coherence</subject><subject>Condensed Matter</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Diffraction</subject><subject>Diffraction patterns</subject><subject>Magnetic properties</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>molecular statics</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>nanoprecipitates</subject><subject>Order parameters</subject><subject>Phases</subject><subject>Physics</subject><subject>Precipitates</subject><subject>Strain distribution</subject><subject>superstructure reflections</subject><subject>Superstructures</subject><subject>Synchrotrons</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwANwiceIQWNtJHXNrq0JBVZH4OVtubKepQhzsBNS3x1EQQuLAaVez36xmF6FzDFcYA7t-xhOAlE0YAcCYptkBGvVS3GuHv_pjdOL9LkABJSO0njlZFFFut9rpuo3KN1mUdRFZE9Wyto3TedmUrWy1v4mcrXQ_8V2jnW9dl7ed05HTptJ5W9ran6IjIyuvz77rGL3eLl7my3j1eHc_n67iPAHgcWIoT5SkKWxwppQyHIOUHIzCRtFJajKmUqNNoojBCZNKZpnRnJENAyKZomN0Oezdyko0LqR2e2FlKZbTleg1oIRkKeAPHNiLgW2cfe-0b8XOdq4O8QRJkoxwTjEECg9U7qz34aSftRhE_2Lx58XBwwfPZ1np_f8G8TB_IutZShinXzdWfqI</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Dupraz, Maxime</creator><creator>Leake, Steven J.</creator><creator>Richard, Marie-Ingrid</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3213-6255</orcidid><orcidid>https://orcid.org/0000-0002-8172-3141</orcidid><orcidid>https://orcid.org/0000-0003-1640-0386</orcidid></search><sort><creationdate>202010</creationdate><title>Bragg coherent imaging of nanoprecipitates: role of superstructure reflections</title><author>Dupraz, Maxime ; Leake, Steven J. ; Richard, Marie-Ingrid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4009-4f394da350b18dddf910aa90fd1fd365f87d5fef4d2f147ada88fe972b702a7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloying</topic><topic>Bragg coherent diffraction imaging</topic><topic>chemical ordering</topic><topic>Coherence</topic><topic>Condensed Matter</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Diffraction</topic><topic>Diffraction patterns</topic><topic>Magnetic properties</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>molecular statics</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>nanoprecipitates</topic><topic>Order parameters</topic><topic>Phases</topic><topic>Physics</topic><topic>Precipitates</topic><topic>Strain distribution</topic><topic>superstructure reflections</topic><topic>Superstructures</topic><topic>Synchrotrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dupraz, Maxime</creatorcontrib><creatorcontrib>Leake, Steven J.</creatorcontrib><creatorcontrib>Richard, Marie-Ingrid</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dupraz, Maxime</au><au>Leake, Steven J.</au><au>Richard, Marie-Ingrid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bragg coherent imaging of nanoprecipitates: role of superstructure reflections</atitle><jtitle>Journal of applied crystallography</jtitle><date>2020-10</date><risdate>2020</risdate><volume>53</volume><issue>5</issue><spage>1353</spage><epage>1369</epage><pages>1353-1369</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>Coherent precipitation of ordered phases is responsible for providing exceptional high‐temperature mechanical properties in a wide range of compositionally complex alloys. Ordered phases are also essential to enhance the magnetic or catalytic properties of alloyed nanoparticles. The present work aims to demonstrate the relevance of Bragg coherent diffraction imaging (BCDI) for studying bulk and thin‐film samples or isolated nanoparticles containing coherent nanoprecipitates/ordered phases. The structures of crystals of a few tens of nanometres in size are modelled with realistic interatomic potentials and are relaxed after introduction of coherent ordered nanoprecipitates. Diffraction patterns from fundamental and superstructure reflections are calculated in the kinematic approximation and used as input to retrieve the strain fields using algorithmic inversion. First, the case of single nanoprecipitates is tackled and it is shown that the strain field distribution from the ordered phase is retrieved very accurately. Then, the influence of the order parameter S on the strain field retrieved from the superstructure reflections is investigated. A very accurate strain distribution can be retrieved for partially ordered phases with large and inhomogeneous strains. Subsequently, the relevance of BCDI is evaluated for the study of systems containing many precipitates, and it is demonstrated that the technique is relevant for such systems. Finally, the experimental feasibility of using BCDI to image ordered phases is discussed in the light of the new possibilities offered by fourth‐generation synchrotron sources. Detailed numerical simulations are presented, aimed at demonstrating the relevance of Bragg coherent diffraction imaging for elucidating coherent nanoprecipitates and more generally chemically ordered phases</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><doi>10.1107/S1600576720011358</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3213-6255</orcidid><orcidid>https://orcid.org/0000-0002-8172-3141</orcidid><orcidid>https://orcid.org/0000-0003-1640-0386</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 2020-10, Vol.53 (5), p.1353-1369
issn 1600-5767
0021-8898
1600-5767
language eng
recordid cdi_hal_primary_oai_HAL_hal_03228501v1
source Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Alloying
Bragg coherent diffraction imaging
chemical ordering
Coherence
Condensed Matter
Crystal structure
Crystals
Diffraction
Diffraction patterns
Magnetic properties
Materials Science
Mechanical properties
molecular statics
Nanoalloys
Nanoparticles
nanoprecipitates
Order parameters
Phases
Physics
Precipitates
Strain distribution
superstructure reflections
Superstructures
Synchrotrons
title Bragg coherent imaging of nanoprecipitates: role of superstructure reflections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bragg%20coherent%20imaging%20of%20nanoprecipitates:%20role%20of%20superstructure%20reflections&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Dupraz,%20Maxime&rft.date=2020-10&rft.volume=53&rft.issue=5&rft.spage=1353&rft.epage=1369&rft.pages=1353-1369&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576720011358&rft_dat=%3Cproquest_hal_p%3E2448299310%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448299310&rft_id=info:pmid/&rfr_iscdi=true