Fault tolerant control of multicellular converter used in shunt active power filter

•Harmonic mitigation in wind energy conversion system based on DFIG.•Three-phase three cells multicellular converter combined with two-level converter used as grid side converter of wind energy conversion system.•Fault tolerant control is applied in order to increase the reliability of multicellular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electric power systems research 2020-11, Vol.188, p.106533, Article 106533
Hauptverfasser: ROUABAH, Boubakeur, TOUBAKH, Houari, SAYED-MOUCHAWEH, Moamar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106533
container_title Electric power systems research
container_volume 188
creator ROUABAH, Boubakeur
TOUBAKH, Houari
SAYED-MOUCHAWEH, Moamar
description •Harmonic mitigation in wind energy conversion system based on DFIG.•Three-phase three cells multicellular converter combined with two-level converter used as grid side converter of wind energy conversion system.•Fault tolerant control is applied in order to increase the reliability of multicellular converter. Shunt active power filters (SAPF) topology based on multicellular converter are used in literature to compensate reactive power and mitigate harmonics generated by nonlinear loads with minimum voltage stress and reduced dv/dt, however a failure in switching devices or variation in parameters of multicellular converter injects a faulty current in electric power grid. This impacts power quality, increases mechanical vibrations, accelerates deterioration with increased temperature and can cause catastrophic damage in wind energy conversion system (WECS). Our contribution is the proposition of fault tolerant control (FTC) to increase the reliability of multicellular converter by the combining between multicellular topology and two-level topology. In this paper the multicellular converter is used as grid side converter (GSC) of wind energy conversion system (WECS) in order to mitigate harmonics generated by nonlinear load, minimize the mechanical vibrations, increase the performance and reliability of multicellular converter during switching devices failure and flying capacitor parameters variation. Simulation results demonstrate that total harmonic distortion (THD) of power grid current satisfies the limit of IEEE standard even when a fault occurs in switching devices or in flying capacitors of GSC.
doi_str_mv 10.1016/j.epsr.2020.106533
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03224417v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378779620303370</els_id><sourcerecordid>2467352691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-d1ac03efcd3d75346e31323982415658dffdd4aeaac530213d6381bba203701b3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouP75Ap4Knjx0TTJt2gUvIq4KCx7Uc8gmUzZLtlmTdMVvb0rFo6eBeb83zHuEXDE6Z5SJ2-0c9zHMOeXjQtQAR2TG2gZKTitxTGYUmrZsmoU4JWcxbimlYtHUM_K2VINLRfIOg-pToX2fgneF74pdFqxG5wanwigcMCQMxRDRFLYv4mbIBqWTPWCx919Z6qzLxAU56ZSLePk7z8nH8vH94blcvT69PNyvSg2Cp9IwpSlgpw2YpoZKIDDgsGh5xWpRt6brjKkUKqVroJyBEdCy9VrxHIayNZyTm-nuRjm5D3anwrf0ysrn-5UcdxQ4ryrWHFhmryd2H_zngDHJrR9Cn9-TvBIN1FwsRopPlA4-xoDd31lG5Vi03MqxaDkWLaeis-luMmHOerAYZNQWe43GBtRJGm__s_8AVXmGYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467352691</pqid></control><display><type>article</type><title>Fault tolerant control of multicellular converter used in shunt active power filter</title><source>Elsevier ScienceDirect Journals</source><creator>ROUABAH, Boubakeur ; TOUBAKH, Houari ; SAYED-MOUCHAWEH, Moamar</creator><creatorcontrib>ROUABAH, Boubakeur ; TOUBAKH, Houari ; SAYED-MOUCHAWEH, Moamar</creatorcontrib><description>•Harmonic mitigation in wind energy conversion system based on DFIG.•Three-phase three cells multicellular converter combined with two-level converter used as grid side converter of wind energy conversion system.•Fault tolerant control is applied in order to increase the reliability of multicellular converter. Shunt active power filters (SAPF) topology based on multicellular converter are used in literature to compensate reactive power and mitigate harmonics generated by nonlinear loads with minimum voltage stress and reduced dv/dt, however a failure in switching devices or variation in parameters of multicellular converter injects a faulty current in electric power grid. This impacts power quality, increases mechanical vibrations, accelerates deterioration with increased temperature and can cause catastrophic damage in wind energy conversion system (WECS). Our contribution is the proposition of fault tolerant control (FTC) to increase the reliability of multicellular converter by the combining between multicellular topology and two-level topology. In this paper the multicellular converter is used as grid side converter (GSC) of wind energy conversion system (WECS) in order to mitigate harmonics generated by nonlinear load, minimize the mechanical vibrations, increase the performance and reliability of multicellular converter during switching devices failure and flying capacitor parameters variation. Simulation results demonstrate that total harmonic distortion (THD) of power grid current satisfies the limit of IEEE standard even when a fault occurs in switching devices or in flying capacitors of GSC.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/j.epsr.2020.106533</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Capacitors ; Civil Engineering ; Converters ; Electric filters ; Electric power grids ; Electricity distribution ; Energy conversion ; Engineering Sciences ; Fault tolerance ; Harmonic distortion ; Parameters ; Reactive power ; Reliability ; Studies ; Switching ; Topology ; Wind damage ; Wind power</subject><ispartof>Electric power systems research, 2020-11, Vol.188, p.106533, Article 106533</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Nov 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-d1ac03efcd3d75346e31323982415658dffdd4aeaac530213d6381bba203701b3</citedby><cites>FETCH-LOGICAL-c362t-d1ac03efcd3d75346e31323982415658dffdd4aeaac530213d6381bba203701b3</cites><orcidid>0000-0002-9319-9009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378779620303370$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03224417$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>ROUABAH, Boubakeur</creatorcontrib><creatorcontrib>TOUBAKH, Houari</creatorcontrib><creatorcontrib>SAYED-MOUCHAWEH, Moamar</creatorcontrib><title>Fault tolerant control of multicellular converter used in shunt active power filter</title><title>Electric power systems research</title><description>•Harmonic mitigation in wind energy conversion system based on DFIG.•Three-phase three cells multicellular converter combined with two-level converter used as grid side converter of wind energy conversion system.•Fault tolerant control is applied in order to increase the reliability of multicellular converter. Shunt active power filters (SAPF) topology based on multicellular converter are used in literature to compensate reactive power and mitigate harmonics generated by nonlinear loads with minimum voltage stress and reduced dv/dt, however a failure in switching devices or variation in parameters of multicellular converter injects a faulty current in electric power grid. This impacts power quality, increases mechanical vibrations, accelerates deterioration with increased temperature and can cause catastrophic damage in wind energy conversion system (WECS). Our contribution is the proposition of fault tolerant control (FTC) to increase the reliability of multicellular converter by the combining between multicellular topology and two-level topology. In this paper the multicellular converter is used as grid side converter (GSC) of wind energy conversion system (WECS) in order to mitigate harmonics generated by nonlinear load, minimize the mechanical vibrations, increase the performance and reliability of multicellular converter during switching devices failure and flying capacitor parameters variation. Simulation results demonstrate that total harmonic distortion (THD) of power grid current satisfies the limit of IEEE standard even when a fault occurs in switching devices or in flying capacitors of GSC.</description><subject>Capacitors</subject><subject>Civil Engineering</subject><subject>Converters</subject><subject>Electric filters</subject><subject>Electric power grids</subject><subject>Electricity distribution</subject><subject>Energy conversion</subject><subject>Engineering Sciences</subject><subject>Fault tolerance</subject><subject>Harmonic distortion</subject><subject>Parameters</subject><subject>Reactive power</subject><subject>Reliability</subject><subject>Studies</subject><subject>Switching</subject><subject>Topology</subject><subject>Wind damage</subject><subject>Wind power</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouP75Ap4Knjx0TTJt2gUvIq4KCx7Uc8gmUzZLtlmTdMVvb0rFo6eBeb83zHuEXDE6Z5SJ2-0c9zHMOeXjQtQAR2TG2gZKTitxTGYUmrZsmoU4JWcxbimlYtHUM_K2VINLRfIOg-pToX2fgneF74pdFqxG5wanwigcMCQMxRDRFLYv4mbIBqWTPWCx919Z6qzLxAU56ZSLePk7z8nH8vH94blcvT69PNyvSg2Cp9IwpSlgpw2YpoZKIDDgsGh5xWpRt6brjKkUKqVroJyBEdCy9VrxHIayNZyTm-nuRjm5D3anwrf0ysrn-5UcdxQ4ryrWHFhmryd2H_zngDHJrR9Cn9-TvBIN1FwsRopPlA4-xoDd31lG5Vi03MqxaDkWLaeis-luMmHOerAYZNQWe43GBtRJGm__s_8AVXmGYg</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>ROUABAH, Boubakeur</creator><creator>TOUBAKH, Houari</creator><creator>SAYED-MOUCHAWEH, Moamar</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9319-9009</orcidid></search><sort><creationdate>20201101</creationdate><title>Fault tolerant control of multicellular converter used in shunt active power filter</title><author>ROUABAH, Boubakeur ; TOUBAKH, Houari ; SAYED-MOUCHAWEH, Moamar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-d1ac03efcd3d75346e31323982415658dffdd4aeaac530213d6381bba203701b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Capacitors</topic><topic>Civil Engineering</topic><topic>Converters</topic><topic>Electric filters</topic><topic>Electric power grids</topic><topic>Electricity distribution</topic><topic>Energy conversion</topic><topic>Engineering Sciences</topic><topic>Fault tolerance</topic><topic>Harmonic distortion</topic><topic>Parameters</topic><topic>Reactive power</topic><topic>Reliability</topic><topic>Studies</topic><topic>Switching</topic><topic>Topology</topic><topic>Wind damage</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ROUABAH, Boubakeur</creatorcontrib><creatorcontrib>TOUBAKH, Houari</creatorcontrib><creatorcontrib>SAYED-MOUCHAWEH, Moamar</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ROUABAH, Boubakeur</au><au>TOUBAKH, Houari</au><au>SAYED-MOUCHAWEH, Moamar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault tolerant control of multicellular converter used in shunt active power filter</atitle><jtitle>Electric power systems research</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>188</volume><spage>106533</spage><pages>106533-</pages><artnum>106533</artnum><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>•Harmonic mitigation in wind energy conversion system based on DFIG.•Three-phase three cells multicellular converter combined with two-level converter used as grid side converter of wind energy conversion system.•Fault tolerant control is applied in order to increase the reliability of multicellular converter. Shunt active power filters (SAPF) topology based on multicellular converter are used in literature to compensate reactive power and mitigate harmonics generated by nonlinear loads with minimum voltage stress and reduced dv/dt, however a failure in switching devices or variation in parameters of multicellular converter injects a faulty current in electric power grid. This impacts power quality, increases mechanical vibrations, accelerates deterioration with increased temperature and can cause catastrophic damage in wind energy conversion system (WECS). Our contribution is the proposition of fault tolerant control (FTC) to increase the reliability of multicellular converter by the combining between multicellular topology and two-level topology. In this paper the multicellular converter is used as grid side converter (GSC) of wind energy conversion system (WECS) in order to mitigate harmonics generated by nonlinear load, minimize the mechanical vibrations, increase the performance and reliability of multicellular converter during switching devices failure and flying capacitor parameters variation. Simulation results demonstrate that total harmonic distortion (THD) of power grid current satisfies the limit of IEEE standard even when a fault occurs in switching devices or in flying capacitors of GSC.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsr.2020.106533</doi><orcidid>https://orcid.org/0000-0002-9319-9009</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-7796
ispartof Electric power systems research, 2020-11, Vol.188, p.106533, Article 106533
issn 0378-7796
1873-2046
language eng
recordid cdi_hal_primary_oai_HAL_hal_03224417v1
source Elsevier ScienceDirect Journals
subjects Capacitors
Civil Engineering
Converters
Electric filters
Electric power grids
Electricity distribution
Energy conversion
Engineering Sciences
Fault tolerance
Harmonic distortion
Parameters
Reactive power
Reliability
Studies
Switching
Topology
Wind damage
Wind power
title Fault tolerant control of multicellular converter used in shunt active power filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A20%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20tolerant%20control%20of%20multicellular%20converter%20used%20in%20shunt%20active%20power%20filter&rft.jtitle=Electric%20power%20systems%20research&rft.au=ROUABAH,%20Boubakeur&rft.date=2020-11-01&rft.volume=188&rft.spage=106533&rft.pages=106533-&rft.artnum=106533&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/j.epsr.2020.106533&rft_dat=%3Cproquest_hal_p%3E2467352691%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467352691&rft_id=info:pmid/&rft_els_id=S0378779620303370&rfr_iscdi=true