Convergence Rate of the Euler-Maruyama Scheme Applied to Diffusion Processes with L Q − L ρ Drift Coefficient and Additive Noise

We are interested in the time discretization of stochastic differential equations with additive d-dimensional Brownian noise and L q − L ρ drift coefficient when the condition d ρ + 2 q < 1, under which Krylov and Röckner [26] proved existence of a unique strong solution, is met. We show weak con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2024-02, Vol.34 (1B)
Hauptverfasser: Jourdain, Benjamin, Menozzi, Stéphane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1B
container_start_page
container_title The Annals of applied probability
container_volume 34
creator Jourdain, Benjamin
Menozzi, Stéphane
description We are interested in the time discretization of stochastic differential equations with additive d-dimensional Brownian noise and L q − L ρ drift coefficient when the condition d ρ + 2 q < 1, under which Krylov and Röckner [26] proved existence of a unique strong solution, is met. We show weak convergence with order 1 2 (1 − (d ρ + 2 q)) which corresponds to half the distance to the threshold for the Euler scheme with randomized time variable and cutoffed drift coefficient so that its contribution on each time-step does not dominate the Brownian contribution. More precisely, we prove that both the diffusion and this Euler scheme admit transition densities and that the difference between these densities is bounded from above by the time-step to this order multiplied by some centered Gaussian density.
doi_str_mv 10.1214/23-AAP2006
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03223426v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03223426v2</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_03223426v23</originalsourceid><addsrcrecordid>eNqVyrtOwzAUgGELgUS4LDzBWRkMtpMm7RilRR0KKpc9spJjclASR7YT1BGxdObFeAeeBJB4AaZP-vUzdiHFlVQyuVYxz_OtEiI9YJGS6ZzPszg7ZJEUM8FnMk2O2Yn3L0KIRbLIIvZe2H5C94x9hfCgA4I1EBqE1dii47fajTvdaXisGuwQ8mFoCWsIFpZkzOjJ9rB1tkLv0cMrhQY2cA9f-48fP99g6cgEKCwaQxVhH0D3NeR1TYEmhDtLHs_YkdGtx_M_T9nlzeqpWPNGt-XgqNNuV1pN5TrflL9NxErFiUonFf_n_QZCJloi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convergence Rate of the Euler-Maruyama Scheme Applied to Diffusion Processes with L Q − L ρ Drift Coefficient and Additive Noise</title><source>Project Euclid Complete</source><creator>Jourdain, Benjamin ; Menozzi, Stéphane</creator><creatorcontrib>Jourdain, Benjamin ; Menozzi, Stéphane</creatorcontrib><description>We are interested in the time discretization of stochastic differential equations with additive d-dimensional Brownian noise and L q − L ρ drift coefficient when the condition d ρ + 2 q &lt; 1, under which Krylov and Röckner [26] proved existence of a unique strong solution, is met. We show weak convergence with order 1 2 (1 − (d ρ + 2 q)) which corresponds to half the distance to the threshold for the Euler scheme with randomized time variable and cutoffed drift coefficient so that its contribution on each time-step does not dominate the Brownian contribution. More precisely, we prove that both the diffusion and this Euler scheme admit transition densities and that the difference between these densities is bounded from above by the time-step to this order multiplied by some centered Gaussian density.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/23-AAP2006</identifier><language>eng</language><publisher>Institute of Mathematical Statistics (IMS)</publisher><subject>Mathematics ; Probability</subject><ispartof>The Annals of applied probability, 2024-02, Vol.34 (1B)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5069-6067 ; 0000-0001-5069-6067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03223426$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jourdain, Benjamin</creatorcontrib><creatorcontrib>Menozzi, Stéphane</creatorcontrib><title>Convergence Rate of the Euler-Maruyama Scheme Applied to Diffusion Processes with L Q − L ρ Drift Coefficient and Additive Noise</title><title>The Annals of applied probability</title><description>We are interested in the time discretization of stochastic differential equations with additive d-dimensional Brownian noise and L q − L ρ drift coefficient when the condition d ρ + 2 q &lt; 1, under which Krylov and Röckner [26] proved existence of a unique strong solution, is met. We show weak convergence with order 1 2 (1 − (d ρ + 2 q)) which corresponds to half the distance to the threshold for the Euler scheme with randomized time variable and cutoffed drift coefficient so that its contribution on each time-step does not dominate the Brownian contribution. More precisely, we prove that both the diffusion and this Euler scheme admit transition densities and that the difference between these densities is bounded from above by the time-step to this order multiplied by some centered Gaussian density.</description><subject>Mathematics</subject><subject>Probability</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVyrtOwzAUgGELgUS4LDzBWRkMtpMm7RilRR0KKpc9spJjclASR7YT1BGxdObFeAeeBJB4AaZP-vUzdiHFlVQyuVYxz_OtEiI9YJGS6ZzPszg7ZJEUM8FnMk2O2Yn3L0KIRbLIIvZe2H5C94x9hfCgA4I1EBqE1dii47fajTvdaXisGuwQ8mFoCWsIFpZkzOjJ9rB1tkLv0cMrhQY2cA9f-48fP99g6cgEKCwaQxVhH0D3NeR1TYEmhDtLHs_YkdGtx_M_T9nlzeqpWPNGt-XgqNNuV1pN5TrflL9NxErFiUonFf_n_QZCJloi</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Jourdain, Benjamin</creator><creator>Menozzi, Stéphane</creator><general>Institute of Mathematical Statistics (IMS)</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5069-6067</orcidid><orcidid>https://orcid.org/0000-0001-5069-6067</orcidid></search><sort><creationdate>20240201</creationdate><title>Convergence Rate of the Euler-Maruyama Scheme Applied to Diffusion Processes with L Q − L ρ Drift Coefficient and Additive Noise</title><author>Jourdain, Benjamin ; Menozzi, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_03223426v23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jourdain, Benjamin</creatorcontrib><creatorcontrib>Menozzi, Stéphane</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jourdain, Benjamin</au><au>Menozzi, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence Rate of the Euler-Maruyama Scheme Applied to Diffusion Processes with L Q − L ρ Drift Coefficient and Additive Noise</atitle><jtitle>The Annals of applied probability</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>34</volume><issue>1B</issue><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>We are interested in the time discretization of stochastic differential equations with additive d-dimensional Brownian noise and L q − L ρ drift coefficient when the condition d ρ + 2 q &lt; 1, under which Krylov and Röckner [26] proved existence of a unique strong solution, is met. We show weak convergence with order 1 2 (1 − (d ρ + 2 q)) which corresponds to half the distance to the threshold for the Euler scheme with randomized time variable and cutoffed drift coefficient so that its contribution on each time-step does not dominate the Brownian contribution. More precisely, we prove that both the diffusion and this Euler scheme admit transition densities and that the difference between these densities is bounded from above by the time-step to this order multiplied by some centered Gaussian density.</abstract><pub>Institute of Mathematical Statistics (IMS)</pub><doi>10.1214/23-AAP2006</doi><orcidid>https://orcid.org/0000-0001-5069-6067</orcidid><orcidid>https://orcid.org/0000-0001-5069-6067</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-5164
ispartof The Annals of applied probability, 2024-02, Vol.34 (1B)
issn 1050-5164
2168-8737
language eng
recordid cdi_hal_primary_oai_HAL_hal_03223426v2
source Project Euclid Complete
subjects Mathematics
Probability
title Convergence Rate of the Euler-Maruyama Scheme Applied to Diffusion Processes with L Q − L ρ Drift Coefficient and Additive Noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T17%3A07%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20Rate%20of%20the%20Euler-Maruyama%20Scheme%20Applied%20to%20Diffusion%20Processes%20with%20L%20Q%20%E2%88%92%20L%20%CF%81%20Drift%20Coefficient%20and%20Additive%20Noise&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Jourdain,%20Benjamin&rft.date=2024-02-01&rft.volume=34&rft.issue=1B&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/23-AAP2006&rft_dat=%3Chal%3Eoai_HAL_hal_03223426v2%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true