A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A search

This work proposes a new methodology and mathematical formulation to address the facility layout problem. The goal is to minimise the total material handling cost subjected to production-derived constraints. This cost is a function of the distance that the products should cover within the facility....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent manufacturing 2020-03, Vol.31 (3), p.615-640
Hauptverfasser: Besbes, Mariem, Zolghadri, Marc, Costa Affonso, Roberta, Masmoudi, Faouzi, Haddar, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 640
container_issue 3
container_start_page 615
container_title Journal of intelligent manufacturing
container_volume 31
creator Besbes, Mariem
Zolghadri, Marc
Costa Affonso, Roberta
Masmoudi, Faouzi
Haddar, Mohamed
description This work proposes a new methodology and mathematical formulation to address the facility layout problem. The goal is to minimise the total material handling cost subjected to production-derived constraints. This cost is a function of the distance that the products should cover within the facility. The first idea is to use the A ∗ algorithm to identify the distances between workstations in a more realistic way. A ∗ determines the shortest path within the facility that contains obstacles and transportation routes. The second idea is to combine a genetic algorithm and the A ∗ algorithm with a homogenous methodology to improve the quality of the facility layouts. In an iterative way, the layout solution space is explored using the genetic algorithm. We study the impacts of the appropriate crossover and mutation operators and the values of the parameters used in this algorithm on the cost of the proposed arrangements. These operators and parameter values are fine-tuned using Monte Carlo simulations. The facility arrangements are all compared and discussed based on their material handling cost associated with the Euclidean distance, rectilinear distance, and A ∗ algorithm. Finally, we present a set of conclusions regarding the suggested methodology and discuss our future research goals.
doi_str_mv 10.1007/s10845-019-01468-x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03217955v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189243966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-79accbda36dc267054363efaa720b228b55950dea38f6b8615d989d761dc238e3</originalsourceid><addsrcrecordid>eNp9kc1OAyEUhYnRxFp9AVckrlyM8jMw4K5p1Jo0caNrwjBMS0NLhWlt317GMbpzQQg33zm5hwPANUZ3GKHqPmEkSlYgLPMpuSgOJ2CEWUUKgUt2CkZIMl4whtk5uEhphRCSguMRCBO4tt0yNMGHxRG2IcIU_N5tFrDVxnnXHaHXx7Dr4DaG2ts1NGGTXGNjz9Q6RmdjeoALu7GdM1D7RYiuW_bcbuttAz_zC05gsjqa5SU4a7VP9urnHoP3p8e36ayYvz6_TCfzwpQl64pKamPqRlPeGMIrxErKqW21rgiqCRE1Y5KhxmoqWl7nJKyRQjYVx5mnwtIxuB18l9qrbXRrHY8qaKdmk7nqZ4gSXEnG9jizNwObE37sbOrUKuziJq-nCBaSlFRynikyUCaGlKJtf20xUn0JaihB5RLUdwnqkEV0EKVt_182_ln_o_oCr9SLrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189243966</pqid></control><display><type>article</type><title>A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A search</title><source>SpringerLink Journals - AutoHoldings</source><creator>Besbes, Mariem ; Zolghadri, Marc ; Costa Affonso, Roberta ; Masmoudi, Faouzi ; Haddar, Mohamed</creator><creatorcontrib>Besbes, Mariem ; Zolghadri, Marc ; Costa Affonso, Roberta ; Masmoudi, Faouzi ; Haddar, Mohamed</creatorcontrib><description>This work proposes a new methodology and mathematical formulation to address the facility layout problem. The goal is to minimise the total material handling cost subjected to production-derived constraints. This cost is a function of the distance that the products should cover within the facility. The first idea is to use the A ∗ algorithm to identify the distances between workstations in a more realistic way. A ∗ determines the shortest path within the facility that contains obstacles and transportation routes. The second idea is to combine a genetic algorithm and the A ∗ algorithm with a homogenous methodology to improve the quality of the facility layouts. In an iterative way, the layout solution space is explored using the genetic algorithm. We study the impacts of the appropriate crossover and mutation operators and the values of the parameters used in this algorithm on the cost of the proposed arrangements. These operators and parameter values are fine-tuned using Monte Carlo simulations. The facility arrangements are all compared and discussed based on their material handling cost associated with the Euclidean distance, rectilinear distance, and A ∗ algorithm. Finally, we present a set of conclusions regarding the suggested methodology and discuss our future research goals.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-019-01468-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced manufacturing technologies ; Algorithms ; Business and Management ; Computer simulation ; Control ; Crossovers ; Engineering Sciences ; Euclidean geometry ; Facilities management ; Genetic algorithms ; Iterative methods ; Layouts ; Machines ; Manufacturing ; Manufacturing cells ; Materials handling ; Mechatronics ; Methodology ; Monte Carlo simulation ; Operators (mathematics) ; Parameters ; Processes ; Production ; Robotics ; Shortest-path problems ; Solution space ; Workstations</subject><ispartof>Journal of intelligent manufacturing, 2020-03, Vol.31 (3), p.615-640</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Intelligent Manufacturing is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-79accbda36dc267054363efaa720b228b55950dea38f6b8615d989d761dc238e3</citedby><cites>FETCH-LOGICAL-c445t-79accbda36dc267054363efaa720b228b55950dea38f6b8615d989d761dc238e3</cites><orcidid>0000-0003-2995-0424 ; 0000-0002-0377-2271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10845-019-01468-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10845-019-01468-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03217955$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Besbes, Mariem</creatorcontrib><creatorcontrib>Zolghadri, Marc</creatorcontrib><creatorcontrib>Costa Affonso, Roberta</creatorcontrib><creatorcontrib>Masmoudi, Faouzi</creatorcontrib><creatorcontrib>Haddar, Mohamed</creatorcontrib><title>A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A search</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>This work proposes a new methodology and mathematical formulation to address the facility layout problem. The goal is to minimise the total material handling cost subjected to production-derived constraints. This cost is a function of the distance that the products should cover within the facility. The first idea is to use the A ∗ algorithm to identify the distances between workstations in a more realistic way. A ∗ determines the shortest path within the facility that contains obstacles and transportation routes. The second idea is to combine a genetic algorithm and the A ∗ algorithm with a homogenous methodology to improve the quality of the facility layouts. In an iterative way, the layout solution space is explored using the genetic algorithm. We study the impacts of the appropriate crossover and mutation operators and the values of the parameters used in this algorithm on the cost of the proposed arrangements. These operators and parameter values are fine-tuned using Monte Carlo simulations. The facility arrangements are all compared and discussed based on their material handling cost associated with the Euclidean distance, rectilinear distance, and A ∗ algorithm. Finally, we present a set of conclusions regarding the suggested methodology and discuss our future research goals.</description><subject>Advanced manufacturing technologies</subject><subject>Algorithms</subject><subject>Business and Management</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Crossovers</subject><subject>Engineering Sciences</subject><subject>Euclidean geometry</subject><subject>Facilities management</subject><subject>Genetic algorithms</subject><subject>Iterative methods</subject><subject>Layouts</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Manufacturing cells</subject><subject>Materials handling</subject><subject>Mechatronics</subject><subject>Methodology</subject><subject>Monte Carlo simulation</subject><subject>Operators (mathematics)</subject><subject>Parameters</subject><subject>Processes</subject><subject>Production</subject><subject>Robotics</subject><subject>Shortest-path problems</subject><subject>Solution space</subject><subject>Workstations</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1OAyEUhYnRxFp9AVckrlyM8jMw4K5p1Jo0caNrwjBMS0NLhWlt317GMbpzQQg33zm5hwPANUZ3GKHqPmEkSlYgLPMpuSgOJ2CEWUUKgUt2CkZIMl4whtk5uEhphRCSguMRCBO4tt0yNMGHxRG2IcIU_N5tFrDVxnnXHaHXx7Dr4DaG2ts1NGGTXGNjz9Q6RmdjeoALu7GdM1D7RYiuW_bcbuttAz_zC05gsjqa5SU4a7VP9urnHoP3p8e36ayYvz6_TCfzwpQl64pKamPqRlPeGMIrxErKqW21rgiqCRE1Y5KhxmoqWl7nJKyRQjYVx5mnwtIxuB18l9qrbXRrHY8qaKdmk7nqZ4gSXEnG9jizNwObE37sbOrUKuziJq-nCBaSlFRynikyUCaGlKJtf20xUn0JaihB5RLUdwnqkEV0EKVt_182_ln_o_oCr9SLrQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Besbes, Mariem</creator><creator>Zolghadri, Marc</creator><creator>Costa Affonso, Roberta</creator><creator>Masmoudi, Faouzi</creator><creator>Haddar, Mohamed</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag (Germany)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2995-0424</orcidid><orcidid>https://orcid.org/0000-0002-0377-2271</orcidid></search><sort><creationdate>20200301</creationdate><title>A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A search</title><author>Besbes, Mariem ; Zolghadri, Marc ; Costa Affonso, Roberta ; Masmoudi, Faouzi ; Haddar, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-79accbda36dc267054363efaa720b228b55950dea38f6b8615d989d761dc238e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advanced manufacturing technologies</topic><topic>Algorithms</topic><topic>Business and Management</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Crossovers</topic><topic>Engineering Sciences</topic><topic>Euclidean geometry</topic><topic>Facilities management</topic><topic>Genetic algorithms</topic><topic>Iterative methods</topic><topic>Layouts</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Manufacturing cells</topic><topic>Materials handling</topic><topic>Mechatronics</topic><topic>Methodology</topic><topic>Monte Carlo simulation</topic><topic>Operators (mathematics)</topic><topic>Parameters</topic><topic>Processes</topic><topic>Production</topic><topic>Robotics</topic><topic>Shortest-path problems</topic><topic>Solution space</topic><topic>Workstations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Besbes, Mariem</creatorcontrib><creatorcontrib>Zolghadri, Marc</creatorcontrib><creatorcontrib>Costa Affonso, Roberta</creatorcontrib><creatorcontrib>Masmoudi, Faouzi</creatorcontrib><creatorcontrib>Haddar, Mohamed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Besbes, Mariem</au><au>Zolghadri, Marc</au><au>Costa Affonso, Roberta</au><au>Masmoudi, Faouzi</au><au>Haddar, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A search</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>31</volume><issue>3</issue><spage>615</spage><epage>640</epage><pages>615-640</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>This work proposes a new methodology and mathematical formulation to address the facility layout problem. The goal is to minimise the total material handling cost subjected to production-derived constraints. This cost is a function of the distance that the products should cover within the facility. The first idea is to use the A ∗ algorithm to identify the distances between workstations in a more realistic way. A ∗ determines the shortest path within the facility that contains obstacles and transportation routes. The second idea is to combine a genetic algorithm and the A ∗ algorithm with a homogenous methodology to improve the quality of the facility layouts. In an iterative way, the layout solution space is explored using the genetic algorithm. We study the impacts of the appropriate crossover and mutation operators and the values of the parameters used in this algorithm on the cost of the proposed arrangements. These operators and parameter values are fine-tuned using Monte Carlo simulations. The facility arrangements are all compared and discussed based on their material handling cost associated with the Euclidean distance, rectilinear distance, and A ∗ algorithm. Finally, we present a set of conclusions regarding the suggested methodology and discuss our future research goals.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10845-019-01468-x</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-2995-0424</orcidid><orcidid>https://orcid.org/0000-0002-0377-2271</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-5515
ispartof Journal of intelligent manufacturing, 2020-03, Vol.31 (3), p.615-640
issn 0956-5515
1572-8145
language eng
recordid cdi_hal_primary_oai_HAL_hal_03217955v1
source SpringerLink Journals - AutoHoldings
subjects Advanced manufacturing technologies
Algorithms
Business and Management
Computer simulation
Control
Crossovers
Engineering Sciences
Euclidean geometry
Facilities management
Genetic algorithms
Iterative methods
Layouts
Machines
Manufacturing
Manufacturing cells
Materials handling
Mechatronics
Methodology
Monte Carlo simulation
Operators (mathematics)
Parameters
Processes
Production
Robotics
Shortest-path problems
Solution space
Workstations
title A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20methodology%20for%20solving%20facility%20layout%20problem%20considering%20barriers:%20genetic%20algorithm%20coupled%20with%20A%20search&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Besbes,%20Mariem&rft.date=2020-03-01&rft.volume=31&rft.issue=3&rft.spage=615&rft.epage=640&rft.pages=615-640&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-019-01468-x&rft_dat=%3Cproquest_hal_p%3E2189243966%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189243966&rft_id=info:pmid/&rfr_iscdi=true