Global Ocean Sediment Composition and Burial Flux in the Deep Sea

Quantitative knowledge about the burial of sedimentary components at the seafloor has wide‐ranging implications in ocean science, from global climate to continental weathering. The use of 230Th‐normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global biogeochemical cycles 2021-04, Vol.35 (4), p.n/a
Hauptverfasser: Hayes, Christopher T., Costa, Kassandra M., Anderson, Robert F., Calvo, Eva, Chase, Zanna, Demina, Ludmila L., Dutay, Jean‐Claude, German, Christopher R., Heimbürger‐Boavida, Lars‐Eric, Jaccard, Samuel L., Jacobel, Allison, Kohfeld, Karen E., Kravchishina, Marina D., Lippold, Jörg, Mekik, Figen, Missiaen, Lise, Pavia, Frank J., Paytan, Adina, Pedrosa‐Pamies, Rut, Petrova, Mariia V., Rahman, Shaily, Robinson, Laura F., Roy‐Barman, Matthieu, Sanchez‐Vidal, Anna, Shiller, Alan, Tagliabue, Alessandro, Tessin, Allyson C., van Hulten, Marco, Zhang, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Global biogeochemical cycles
container_volume 35
creator Hayes, Christopher T.
Costa, Kassandra M.
Anderson, Robert F.
Calvo, Eva
Chase, Zanna
Demina, Ludmila L.
Dutay, Jean‐Claude
German, Christopher R.
Heimbürger‐Boavida, Lars‐Eric
Jaccard, Samuel L.
Jacobel, Allison
Kohfeld, Karen E.
Kravchishina, Marina D.
Lippold, Jörg
Mekik, Figen
Missiaen, Lise
Pavia, Frank J.
Paytan, Adina
Pedrosa‐Pamies, Rut
Petrova, Mariia V.
Rahman, Shaily
Robinson, Laura F.
Roy‐Barman, Matthieu
Sanchez‐Vidal, Anna
Shiller, Alan
Tagliabue, Alessandro
Tessin, Allyson C.
van Hulten, Marco
Zhang, Jing
description Quantitative knowledge about the burial of sedimentary components at the seafloor has wide‐ranging implications in ocean science, from global climate to continental weathering. The use of 230Th‐normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sediment redistribution by bottom currents and minimizing the impact of age model uncertainty. Here we employ a recently compiled global data set of 230Th‐normalized fluxes with an updated database of seafloor surface sediment composition to derive atlases of the deep‐sea burial flux of calcium carbonate, biogenic opal, total organic carbon (TOC), nonbiogenic material, iron, mercury, and excess barium (Baxs). The spatial patterns of major component burial are mainly consistent with prior work, but the new quantitative estimates allow evaluations of deep‐sea budgets. Our integrated deep‐sea burial fluxes are 136 Tg C/yr CaCO3, 153 Tg Si/yr opal, 20Tg C/yr TOC, 220 Mg Hg/yr, and 2.6 Tg Baxs/yr. This opal flux is roughly a factor of 2 increase over previous estimates, with important implications for the global Si cycle. Sedimentary Fe fluxes reflect a mixture of sources including lithogenic material, hydrothermal inputs and authigenic phases. The fluxes of some commonly used paleo‐productivity proxies (TOC, biogenic opal, and Baxs) are not well‐correlated geographically with satellite‐based productivity estimates. Our new compilation of sedimentary fluxes provides detailed regional and global information, which will help refine the understanding of sediment preservation. Key Points Global marine sediment composition (CaCO3, opal, TOC, Fe, Hg, Ba) is presented Th‐normalized fluxes of major and minor components in the deep sea are constrained Deep sea budgets and paleo‐proxy applications can be refined with this compilation
doi_str_mv 10.1029/2020GB006769
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03206182v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519070654</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4673-73a322318351ec1f3ef408804221fceb85d572cf761096acba734ba1f606495b3</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFKzVmz9gwZNgdGa_kj220aZCoQf1vGzSDd2SJjEfav-9KRHx5GlgeOZleAm5RrhHYPqBAYNkDqBCpU_IBLUQgWZMnJIJRJEKFOPqnFy07Q4AhZR6QmZJUaW2oOvM2ZK-uI3fu7KjcbWvq9Z3viqpLTd03jd-UIui_6K-pN3W0Ufn6uHAXpKz3Batu_qZU_K2eHqNl8FqnTzHs1VghQp5EHLLGeMYcYkuw5y7XAxPgWAM88ylkdzIkGV5qBC0sllqQy5Si7kCJbRM-ZTcjrlbW5i68XvbHExlvVnOVua4A85AYcQ-cLA3o62b6r13bWd2Vd-Uw3uGSdQQgpJiUHejypqqbRuX_8YimGOh5m-hA2cj__SFO_xrTTKPGSJy_g14uXJW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519070654</pqid></control><display><type>article</type><title>Global Ocean Sediment Composition and Burial Flux in the Deep Sea</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Hayes, Christopher T. ; Costa, Kassandra M. ; Anderson, Robert F. ; Calvo, Eva ; Chase, Zanna ; Demina, Ludmila L. ; Dutay, Jean‐Claude ; German, Christopher R. ; Heimbürger‐Boavida, Lars‐Eric ; Jaccard, Samuel L. ; Jacobel, Allison ; Kohfeld, Karen E. ; Kravchishina, Marina D. ; Lippold, Jörg ; Mekik, Figen ; Missiaen, Lise ; Pavia, Frank J. ; Paytan, Adina ; Pedrosa‐Pamies, Rut ; Petrova, Mariia V. ; Rahman, Shaily ; Robinson, Laura F. ; Roy‐Barman, Matthieu ; Sanchez‐Vidal, Anna ; Shiller, Alan ; Tagliabue, Alessandro ; Tessin, Allyson C. ; van Hulten, Marco ; Zhang, Jing</creator><creatorcontrib>Hayes, Christopher T. ; Costa, Kassandra M. ; Anderson, Robert F. ; Calvo, Eva ; Chase, Zanna ; Demina, Ludmila L. ; Dutay, Jean‐Claude ; German, Christopher R. ; Heimbürger‐Boavida, Lars‐Eric ; Jaccard, Samuel L. ; Jacobel, Allison ; Kohfeld, Karen E. ; Kravchishina, Marina D. ; Lippold, Jörg ; Mekik, Figen ; Missiaen, Lise ; Pavia, Frank J. ; Paytan, Adina ; Pedrosa‐Pamies, Rut ; Petrova, Mariia V. ; Rahman, Shaily ; Robinson, Laura F. ; Roy‐Barman, Matthieu ; Sanchez‐Vidal, Anna ; Shiller, Alan ; Tagliabue, Alessandro ; Tessin, Allyson C. ; van Hulten, Marco ; Zhang, Jing</creatorcontrib><description>Quantitative knowledge about the burial of sedimentary components at the seafloor has wide‐ranging implications in ocean science, from global climate to continental weathering. The use of 230Th‐normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sediment redistribution by bottom currents and minimizing the impact of age model uncertainty. Here we employ a recently compiled global data set of 230Th‐normalized fluxes with an updated database of seafloor surface sediment composition to derive atlases of the deep‐sea burial flux of calcium carbonate, biogenic opal, total organic carbon (TOC), nonbiogenic material, iron, mercury, and excess barium (Baxs). The spatial patterns of major component burial are mainly consistent with prior work, but the new quantitative estimates allow evaluations of deep‐sea budgets. Our integrated deep‐sea burial fluxes are 136 Tg C/yr CaCO3, 153 Tg Si/yr opal, 20Tg C/yr TOC, 220 Mg Hg/yr, and 2.6 Tg Baxs/yr. This opal flux is roughly a factor of 2 increase over previous estimates, with important implications for the global Si cycle. Sedimentary Fe fluxes reflect a mixture of sources including lithogenic material, hydrothermal inputs and authigenic phases. The fluxes of some commonly used paleo‐productivity proxies (TOC, biogenic opal, and Baxs) are not well‐correlated geographically with satellite‐based productivity estimates. Our new compilation of sedimentary fluxes provides detailed regional and global information, which will help refine the understanding of sediment preservation. Key Points Global marine sediment composition (CaCO3, opal, TOC, Fe, Hg, Ba) is presented Th‐normalized fluxes of major and minor components in the deep sea are constrained Deep sea budgets and paleo‐proxy applications can be refined with this compilation</description><identifier>ISSN: 0886-6236</identifier><identifier>EISSN: 1944-9224</identifier><identifier>EISSN: 1944-8224</identifier><identifier>DOI: 10.1029/2020GB006769</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Barium ; Bottom currents ; Calcium ; Calcium carbonate ; Calcium carbonates ; carbon cycle ; Carbonates ; Composition ; Continental interfaces, environment ; Deep sea ; Estimates ; Fluctuations ; Fluxes ; Global climate ; Iron ; marine atlas ; Mercury ; Mercury (metal) ; Ocean currents ; Ocean floor ; Ocean, Atmosphere ; Oceans ; Opal ; Organic carbon ; Productivity ; Sciences of the Universe ; Sea currents ; Sediment ; sediment burial ; Sediment composition ; Sediments ; Silicon ; Total organic carbon ; Uncertainty ; Weathering</subject><ispartof>Global biogeochemical cycles, 2021-04, Vol.35 (4), p.n/a</ispartof><rights>2021. The Authors.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4673-73a322318351ec1f3ef408804221fceb85d572cf761096acba734ba1f606495b3</citedby><cites>FETCH-LOGICAL-a4673-73a322318351ec1f3ef408804221fceb85d572cf761096acba734ba1f606495b3</cites><orcidid>0000-0002-0248-9335 ; 0000-0001-8657-8484 ; 0000-0003-3504-4727 ; 0000-0002-8472-2494 ; 0000-0002-5636-2989 ; 0000-0002-5793-0896 ; 0000-0001-9967-2197 ; 0000-0001-7241-1624 ; 0000-0002-2068-7909 ; 0000-0002-3912-7258 ; 0000-0003-3659-4499 ; 0000-0001-8715-638X ; 0000-0002-3045-4949 ; 0000-0002-0679-1347 ; 0000-0002-3572-3634 ; 0000-0001-8360-4712 ; 0000-0002-2409-3104 ; 0000-0001-9967-2891 ; 0000-0003-1976-5065 ; 0000-0002-7660-6151 ; 0000-0001-5060-779X ; 0000-0002-1036-9026 ; 0000-0003-3627-0179 ; 0000-0003-0632-5183 ; 0000-0002-8209-1959 ; 0000-0002-2216-6445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020GB006769$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020GB006769$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03206182$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hayes, Christopher T.</creatorcontrib><creatorcontrib>Costa, Kassandra M.</creatorcontrib><creatorcontrib>Anderson, Robert F.</creatorcontrib><creatorcontrib>Calvo, Eva</creatorcontrib><creatorcontrib>Chase, Zanna</creatorcontrib><creatorcontrib>Demina, Ludmila L.</creatorcontrib><creatorcontrib>Dutay, Jean‐Claude</creatorcontrib><creatorcontrib>German, Christopher R.</creatorcontrib><creatorcontrib>Heimbürger‐Boavida, Lars‐Eric</creatorcontrib><creatorcontrib>Jaccard, Samuel L.</creatorcontrib><creatorcontrib>Jacobel, Allison</creatorcontrib><creatorcontrib>Kohfeld, Karen E.</creatorcontrib><creatorcontrib>Kravchishina, Marina D.</creatorcontrib><creatorcontrib>Lippold, Jörg</creatorcontrib><creatorcontrib>Mekik, Figen</creatorcontrib><creatorcontrib>Missiaen, Lise</creatorcontrib><creatorcontrib>Pavia, Frank J.</creatorcontrib><creatorcontrib>Paytan, Adina</creatorcontrib><creatorcontrib>Pedrosa‐Pamies, Rut</creatorcontrib><creatorcontrib>Petrova, Mariia V.</creatorcontrib><creatorcontrib>Rahman, Shaily</creatorcontrib><creatorcontrib>Robinson, Laura F.</creatorcontrib><creatorcontrib>Roy‐Barman, Matthieu</creatorcontrib><creatorcontrib>Sanchez‐Vidal, Anna</creatorcontrib><creatorcontrib>Shiller, Alan</creatorcontrib><creatorcontrib>Tagliabue, Alessandro</creatorcontrib><creatorcontrib>Tessin, Allyson C.</creatorcontrib><creatorcontrib>van Hulten, Marco</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><title>Global Ocean Sediment Composition and Burial Flux in the Deep Sea</title><title>Global biogeochemical cycles</title><description>Quantitative knowledge about the burial of sedimentary components at the seafloor has wide‐ranging implications in ocean science, from global climate to continental weathering. The use of 230Th‐normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sediment redistribution by bottom currents and minimizing the impact of age model uncertainty. Here we employ a recently compiled global data set of 230Th‐normalized fluxes with an updated database of seafloor surface sediment composition to derive atlases of the deep‐sea burial flux of calcium carbonate, biogenic opal, total organic carbon (TOC), nonbiogenic material, iron, mercury, and excess barium (Baxs). The spatial patterns of major component burial are mainly consistent with prior work, but the new quantitative estimates allow evaluations of deep‐sea budgets. Our integrated deep‐sea burial fluxes are 136 Tg C/yr CaCO3, 153 Tg Si/yr opal, 20Tg C/yr TOC, 220 Mg Hg/yr, and 2.6 Tg Baxs/yr. This opal flux is roughly a factor of 2 increase over previous estimates, with important implications for the global Si cycle. Sedimentary Fe fluxes reflect a mixture of sources including lithogenic material, hydrothermal inputs and authigenic phases. The fluxes of some commonly used paleo‐productivity proxies (TOC, biogenic opal, and Baxs) are not well‐correlated geographically with satellite‐based productivity estimates. Our new compilation of sedimentary fluxes provides detailed regional and global information, which will help refine the understanding of sediment preservation. Key Points Global marine sediment composition (CaCO3, opal, TOC, Fe, Hg, Ba) is presented Th‐normalized fluxes of major and minor components in the deep sea are constrained Deep sea budgets and paleo‐proxy applications can be refined with this compilation</description><subject>Barium</subject><subject>Bottom currents</subject><subject>Calcium</subject><subject>Calcium carbonate</subject><subject>Calcium carbonates</subject><subject>carbon cycle</subject><subject>Carbonates</subject><subject>Composition</subject><subject>Continental interfaces, environment</subject><subject>Deep sea</subject><subject>Estimates</subject><subject>Fluctuations</subject><subject>Fluxes</subject><subject>Global climate</subject><subject>Iron</subject><subject>marine atlas</subject><subject>Mercury</subject><subject>Mercury (metal)</subject><subject>Ocean currents</subject><subject>Ocean floor</subject><subject>Ocean, Atmosphere</subject><subject>Oceans</subject><subject>Opal</subject><subject>Organic carbon</subject><subject>Productivity</subject><subject>Sciences of the Universe</subject><subject>Sea currents</subject><subject>Sediment</subject><subject>sediment burial</subject><subject>Sediment composition</subject><subject>Sediments</subject><subject>Silicon</subject><subject>Total organic carbon</subject><subject>Uncertainty</subject><subject>Weathering</subject><issn>0886-6236</issn><issn>1944-9224</issn><issn>1944-8224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp90E1Lw0AQBuBFFKzVmz9gwZNgdGa_kj220aZCoQf1vGzSDd2SJjEfav-9KRHx5GlgeOZleAm5RrhHYPqBAYNkDqBCpU_IBLUQgWZMnJIJRJEKFOPqnFy07Q4AhZR6QmZJUaW2oOvM2ZK-uI3fu7KjcbWvq9Z3viqpLTd03jd-UIui_6K-pN3W0Ufn6uHAXpKz3Batu_qZU_K2eHqNl8FqnTzHs1VghQp5EHLLGeMYcYkuw5y7XAxPgWAM88ylkdzIkGV5qBC0sllqQy5Si7kCJbRM-ZTcjrlbW5i68XvbHExlvVnOVua4A85AYcQ-cLA3o62b6r13bWd2Vd-Uw3uGSdQQgpJiUHejypqqbRuX_8YimGOh5m-hA2cj__SFO_xrTTKPGSJy_g14uXJW</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Hayes, Christopher T.</creator><creator>Costa, Kassandra M.</creator><creator>Anderson, Robert F.</creator><creator>Calvo, Eva</creator><creator>Chase, Zanna</creator><creator>Demina, Ludmila L.</creator><creator>Dutay, Jean‐Claude</creator><creator>German, Christopher R.</creator><creator>Heimbürger‐Boavida, Lars‐Eric</creator><creator>Jaccard, Samuel L.</creator><creator>Jacobel, Allison</creator><creator>Kohfeld, Karen E.</creator><creator>Kravchishina, Marina D.</creator><creator>Lippold, Jörg</creator><creator>Mekik, Figen</creator><creator>Missiaen, Lise</creator><creator>Pavia, Frank J.</creator><creator>Paytan, Adina</creator><creator>Pedrosa‐Pamies, Rut</creator><creator>Petrova, Mariia V.</creator><creator>Rahman, Shaily</creator><creator>Robinson, Laura F.</creator><creator>Roy‐Barman, Matthieu</creator><creator>Sanchez‐Vidal, Anna</creator><creator>Shiller, Alan</creator><creator>Tagliabue, Alessandro</creator><creator>Tessin, Allyson C.</creator><creator>van Hulten, Marco</creator><creator>Zhang, Jing</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0248-9335</orcidid><orcidid>https://orcid.org/0000-0001-8657-8484</orcidid><orcidid>https://orcid.org/0000-0003-3504-4727</orcidid><orcidid>https://orcid.org/0000-0002-8472-2494</orcidid><orcidid>https://orcid.org/0000-0002-5636-2989</orcidid><orcidid>https://orcid.org/0000-0002-5793-0896</orcidid><orcidid>https://orcid.org/0000-0001-9967-2197</orcidid><orcidid>https://orcid.org/0000-0001-7241-1624</orcidid><orcidid>https://orcid.org/0000-0002-2068-7909</orcidid><orcidid>https://orcid.org/0000-0002-3912-7258</orcidid><orcidid>https://orcid.org/0000-0003-3659-4499</orcidid><orcidid>https://orcid.org/0000-0001-8715-638X</orcidid><orcidid>https://orcid.org/0000-0002-3045-4949</orcidid><orcidid>https://orcid.org/0000-0002-0679-1347</orcidid><orcidid>https://orcid.org/0000-0002-3572-3634</orcidid><orcidid>https://orcid.org/0000-0001-8360-4712</orcidid><orcidid>https://orcid.org/0000-0002-2409-3104</orcidid><orcidid>https://orcid.org/0000-0001-9967-2891</orcidid><orcidid>https://orcid.org/0000-0003-1976-5065</orcidid><orcidid>https://orcid.org/0000-0002-7660-6151</orcidid><orcidid>https://orcid.org/0000-0001-5060-779X</orcidid><orcidid>https://orcid.org/0000-0002-1036-9026</orcidid><orcidid>https://orcid.org/0000-0003-3627-0179</orcidid><orcidid>https://orcid.org/0000-0003-0632-5183</orcidid><orcidid>https://orcid.org/0000-0002-8209-1959</orcidid><orcidid>https://orcid.org/0000-0002-2216-6445</orcidid></search><sort><creationdate>202104</creationdate><title>Global Ocean Sediment Composition and Burial Flux in the Deep Sea</title><author>Hayes, Christopher T. ; Costa, Kassandra M. ; Anderson, Robert F. ; Calvo, Eva ; Chase, Zanna ; Demina, Ludmila L. ; Dutay, Jean‐Claude ; German, Christopher R. ; Heimbürger‐Boavida, Lars‐Eric ; Jaccard, Samuel L. ; Jacobel, Allison ; Kohfeld, Karen E. ; Kravchishina, Marina D. ; Lippold, Jörg ; Mekik, Figen ; Missiaen, Lise ; Pavia, Frank J. ; Paytan, Adina ; Pedrosa‐Pamies, Rut ; Petrova, Mariia V. ; Rahman, Shaily ; Robinson, Laura F. ; Roy‐Barman, Matthieu ; Sanchez‐Vidal, Anna ; Shiller, Alan ; Tagliabue, Alessandro ; Tessin, Allyson C. ; van Hulten, Marco ; Zhang, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4673-73a322318351ec1f3ef408804221fceb85d572cf761096acba734ba1f606495b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barium</topic><topic>Bottom currents</topic><topic>Calcium</topic><topic>Calcium carbonate</topic><topic>Calcium carbonates</topic><topic>carbon cycle</topic><topic>Carbonates</topic><topic>Composition</topic><topic>Continental interfaces, environment</topic><topic>Deep sea</topic><topic>Estimates</topic><topic>Fluctuations</topic><topic>Fluxes</topic><topic>Global climate</topic><topic>Iron</topic><topic>marine atlas</topic><topic>Mercury</topic><topic>Mercury (metal)</topic><topic>Ocean currents</topic><topic>Ocean floor</topic><topic>Ocean, Atmosphere</topic><topic>Oceans</topic><topic>Opal</topic><topic>Organic carbon</topic><topic>Productivity</topic><topic>Sciences of the Universe</topic><topic>Sea currents</topic><topic>Sediment</topic><topic>sediment burial</topic><topic>Sediment composition</topic><topic>Sediments</topic><topic>Silicon</topic><topic>Total organic carbon</topic><topic>Uncertainty</topic><topic>Weathering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayes, Christopher T.</creatorcontrib><creatorcontrib>Costa, Kassandra M.</creatorcontrib><creatorcontrib>Anderson, Robert F.</creatorcontrib><creatorcontrib>Calvo, Eva</creatorcontrib><creatorcontrib>Chase, Zanna</creatorcontrib><creatorcontrib>Demina, Ludmila L.</creatorcontrib><creatorcontrib>Dutay, Jean‐Claude</creatorcontrib><creatorcontrib>German, Christopher R.</creatorcontrib><creatorcontrib>Heimbürger‐Boavida, Lars‐Eric</creatorcontrib><creatorcontrib>Jaccard, Samuel L.</creatorcontrib><creatorcontrib>Jacobel, Allison</creatorcontrib><creatorcontrib>Kohfeld, Karen E.</creatorcontrib><creatorcontrib>Kravchishina, Marina D.</creatorcontrib><creatorcontrib>Lippold, Jörg</creatorcontrib><creatorcontrib>Mekik, Figen</creatorcontrib><creatorcontrib>Missiaen, Lise</creatorcontrib><creatorcontrib>Pavia, Frank J.</creatorcontrib><creatorcontrib>Paytan, Adina</creatorcontrib><creatorcontrib>Pedrosa‐Pamies, Rut</creatorcontrib><creatorcontrib>Petrova, Mariia V.</creatorcontrib><creatorcontrib>Rahman, Shaily</creatorcontrib><creatorcontrib>Robinson, Laura F.</creatorcontrib><creatorcontrib>Roy‐Barman, Matthieu</creatorcontrib><creatorcontrib>Sanchez‐Vidal, Anna</creatorcontrib><creatorcontrib>Shiller, Alan</creatorcontrib><creatorcontrib>Tagliabue, Alessandro</creatorcontrib><creatorcontrib>Tessin, Allyson C.</creatorcontrib><creatorcontrib>van Hulten, Marco</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Global biogeochemical cycles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayes, Christopher T.</au><au>Costa, Kassandra M.</au><au>Anderson, Robert F.</au><au>Calvo, Eva</au><au>Chase, Zanna</au><au>Demina, Ludmila L.</au><au>Dutay, Jean‐Claude</au><au>German, Christopher R.</au><au>Heimbürger‐Boavida, Lars‐Eric</au><au>Jaccard, Samuel L.</au><au>Jacobel, Allison</au><au>Kohfeld, Karen E.</au><au>Kravchishina, Marina D.</au><au>Lippold, Jörg</au><au>Mekik, Figen</au><au>Missiaen, Lise</au><au>Pavia, Frank J.</au><au>Paytan, Adina</au><au>Pedrosa‐Pamies, Rut</au><au>Petrova, Mariia V.</au><au>Rahman, Shaily</au><au>Robinson, Laura F.</au><au>Roy‐Barman, Matthieu</au><au>Sanchez‐Vidal, Anna</au><au>Shiller, Alan</au><au>Tagliabue, Alessandro</au><au>Tessin, Allyson C.</au><au>van Hulten, Marco</au><au>Zhang, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Ocean Sediment Composition and Burial Flux in the Deep Sea</atitle><jtitle>Global biogeochemical cycles</jtitle><date>2021-04</date><risdate>2021</risdate><volume>35</volume><issue>4</issue><epage>n/a</epage><issn>0886-6236</issn><eissn>1944-9224</eissn><eissn>1944-8224</eissn><abstract>Quantitative knowledge about the burial of sedimentary components at the seafloor has wide‐ranging implications in ocean science, from global climate to continental weathering. The use of 230Th‐normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sediment redistribution by bottom currents and minimizing the impact of age model uncertainty. Here we employ a recently compiled global data set of 230Th‐normalized fluxes with an updated database of seafloor surface sediment composition to derive atlases of the deep‐sea burial flux of calcium carbonate, biogenic opal, total organic carbon (TOC), nonbiogenic material, iron, mercury, and excess barium (Baxs). The spatial patterns of major component burial are mainly consistent with prior work, but the new quantitative estimates allow evaluations of deep‐sea budgets. Our integrated deep‐sea burial fluxes are 136 Tg C/yr CaCO3, 153 Tg Si/yr opal, 20Tg C/yr TOC, 220 Mg Hg/yr, and 2.6 Tg Baxs/yr. This opal flux is roughly a factor of 2 increase over previous estimates, with important implications for the global Si cycle. Sedimentary Fe fluxes reflect a mixture of sources including lithogenic material, hydrothermal inputs and authigenic phases. The fluxes of some commonly used paleo‐productivity proxies (TOC, biogenic opal, and Baxs) are not well‐correlated geographically with satellite‐based productivity estimates. Our new compilation of sedimentary fluxes provides detailed regional and global information, which will help refine the understanding of sediment preservation. Key Points Global marine sediment composition (CaCO3, opal, TOC, Fe, Hg, Ba) is presented Th‐normalized fluxes of major and minor components in the deep sea are constrained Deep sea budgets and paleo‐proxy applications can be refined with this compilation</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2020GB006769</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-0248-9335</orcidid><orcidid>https://orcid.org/0000-0001-8657-8484</orcidid><orcidid>https://orcid.org/0000-0003-3504-4727</orcidid><orcidid>https://orcid.org/0000-0002-8472-2494</orcidid><orcidid>https://orcid.org/0000-0002-5636-2989</orcidid><orcidid>https://orcid.org/0000-0002-5793-0896</orcidid><orcidid>https://orcid.org/0000-0001-9967-2197</orcidid><orcidid>https://orcid.org/0000-0001-7241-1624</orcidid><orcidid>https://orcid.org/0000-0002-2068-7909</orcidid><orcidid>https://orcid.org/0000-0002-3912-7258</orcidid><orcidid>https://orcid.org/0000-0003-3659-4499</orcidid><orcidid>https://orcid.org/0000-0001-8715-638X</orcidid><orcidid>https://orcid.org/0000-0002-3045-4949</orcidid><orcidid>https://orcid.org/0000-0002-0679-1347</orcidid><orcidid>https://orcid.org/0000-0002-3572-3634</orcidid><orcidid>https://orcid.org/0000-0001-8360-4712</orcidid><orcidid>https://orcid.org/0000-0002-2409-3104</orcidid><orcidid>https://orcid.org/0000-0001-9967-2891</orcidid><orcidid>https://orcid.org/0000-0003-1976-5065</orcidid><orcidid>https://orcid.org/0000-0002-7660-6151</orcidid><orcidid>https://orcid.org/0000-0001-5060-779X</orcidid><orcidid>https://orcid.org/0000-0002-1036-9026</orcidid><orcidid>https://orcid.org/0000-0003-3627-0179</orcidid><orcidid>https://orcid.org/0000-0003-0632-5183</orcidid><orcidid>https://orcid.org/0000-0002-8209-1959</orcidid><orcidid>https://orcid.org/0000-0002-2216-6445</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0886-6236
ispartof Global biogeochemical cycles, 2021-04, Vol.35 (4), p.n/a
issn 0886-6236
1944-9224
1944-8224
language eng
recordid cdi_hal_primary_oai_HAL_hal_03206182v1
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Barium
Bottom currents
Calcium
Calcium carbonate
Calcium carbonates
carbon cycle
Carbonates
Composition
Continental interfaces, environment
Deep sea
Estimates
Fluctuations
Fluxes
Global climate
Iron
marine atlas
Mercury
Mercury (metal)
Ocean currents
Ocean floor
Ocean, Atmosphere
Oceans
Opal
Organic carbon
Productivity
Sciences of the Universe
Sea currents
Sediment
sediment burial
Sediment composition
Sediments
Silicon
Total organic carbon
Uncertainty
Weathering
title Global Ocean Sediment Composition and Burial Flux in the Deep Sea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Ocean%20Sediment%20Composition%20and%20Burial%20Flux%20in%20the%20Deep%20Sea&rft.jtitle=Global%20biogeochemical%20cycles&rft.au=Hayes,%20Christopher%20T.&rft.date=2021-04&rft.volume=35&rft.issue=4&rft.epage=n/a&rft.issn=0886-6236&rft.eissn=1944-9224&rft_id=info:doi/10.1029/2020GB006769&rft_dat=%3Cproquest_hal_p%3E2519070654%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519070654&rft_id=info:pmid/&rfr_iscdi=true