Global Ocean Sediment Composition and Burial Flux in the Deep Sea
Quantitative knowledge about the burial of sedimentary components at the seafloor has wide‐ranging implications in ocean science, from global climate to continental weathering. The use of 230Th‐normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sed...
Gespeichert in:
Veröffentlicht in: | Global biogeochemical cycles 2021-04, Vol.35 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Global biogeochemical cycles |
container_volume | 35 |
creator | Hayes, Christopher T. Costa, Kassandra M. Anderson, Robert F. Calvo, Eva Chase, Zanna Demina, Ludmila L. Dutay, Jean‐Claude German, Christopher R. Heimbürger‐Boavida, Lars‐Eric Jaccard, Samuel L. Jacobel, Allison Kohfeld, Karen E. Kravchishina, Marina D. Lippold, Jörg Mekik, Figen Missiaen, Lise Pavia, Frank J. Paytan, Adina Pedrosa‐Pamies, Rut Petrova, Mariia V. Rahman, Shaily Robinson, Laura F. Roy‐Barman, Matthieu Sanchez‐Vidal, Anna Shiller, Alan Tagliabue, Alessandro Tessin, Allyson C. van Hulten, Marco Zhang, Jing |
description | Quantitative knowledge about the burial of sedimentary components at the seafloor has wide‐ranging implications in ocean science, from global climate to continental weathering. The use of 230Th‐normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sediment redistribution by bottom currents and minimizing the impact of age model uncertainty. Here we employ a recently compiled global data set of 230Th‐normalized fluxes with an updated database of seafloor surface sediment composition to derive atlases of the deep‐sea burial flux of calcium carbonate, biogenic opal, total organic carbon (TOC), nonbiogenic material, iron, mercury, and excess barium (Baxs). The spatial patterns of major component burial are mainly consistent with prior work, but the new quantitative estimates allow evaluations of deep‐sea budgets. Our integrated deep‐sea burial fluxes are 136 Tg C/yr CaCO3, 153 Tg Si/yr opal, 20Tg C/yr TOC, 220 Mg Hg/yr, and 2.6 Tg Baxs/yr. This opal flux is roughly a factor of 2 increase over previous estimates, with important implications for the global Si cycle. Sedimentary Fe fluxes reflect a mixture of sources including lithogenic material, hydrothermal inputs and authigenic phases. The fluxes of some commonly used paleo‐productivity proxies (TOC, biogenic opal, and Baxs) are not well‐correlated geographically with satellite‐based productivity estimates. Our new compilation of sedimentary fluxes provides detailed regional and global information, which will help refine the understanding of sediment preservation.
Key Points
Global marine sediment composition (CaCO3, opal, TOC, Fe, Hg, Ba) is presented
Th‐normalized fluxes of major and minor components in the deep sea are constrained
Deep sea budgets and paleo‐proxy applications can be refined with this compilation |
doi_str_mv | 10.1029/2020GB006769 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03206182v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519070654</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4673-73a322318351ec1f3ef408804221fceb85d572cf761096acba734ba1f606495b3</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFKzVmz9gwZNgdGa_kj220aZCoQf1vGzSDd2SJjEfav-9KRHx5GlgeOZleAm5RrhHYPqBAYNkDqBCpU_IBLUQgWZMnJIJRJEKFOPqnFy07Q4AhZR6QmZJUaW2oOvM2ZK-uI3fu7KjcbWvq9Z3viqpLTd03jd-UIui_6K-pN3W0Ufn6uHAXpKz3Batu_qZU_K2eHqNl8FqnTzHs1VghQp5EHLLGeMYcYkuw5y7XAxPgWAM88ylkdzIkGV5qBC0sllqQy5Si7kCJbRM-ZTcjrlbW5i68XvbHExlvVnOVua4A85AYcQ-cLA3o62b6r13bWd2Vd-Uw3uGSdQQgpJiUHejypqqbRuX_8YimGOh5m-hA2cj__SFO_xrTTKPGSJy_g14uXJW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519070654</pqid></control><display><type>article</type><title>Global Ocean Sediment Composition and Burial Flux in the Deep Sea</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Hayes, Christopher T. ; Costa, Kassandra M. ; Anderson, Robert F. ; Calvo, Eva ; Chase, Zanna ; Demina, Ludmila L. ; Dutay, Jean‐Claude ; German, Christopher R. ; Heimbürger‐Boavida, Lars‐Eric ; Jaccard, Samuel L. ; Jacobel, Allison ; Kohfeld, Karen E. ; Kravchishina, Marina D. ; Lippold, Jörg ; Mekik, Figen ; Missiaen, Lise ; Pavia, Frank J. ; Paytan, Adina ; Pedrosa‐Pamies, Rut ; Petrova, Mariia V. ; Rahman, Shaily ; Robinson, Laura F. ; Roy‐Barman, Matthieu ; Sanchez‐Vidal, Anna ; Shiller, Alan ; Tagliabue, Alessandro ; Tessin, Allyson C. ; van Hulten, Marco ; Zhang, Jing</creator><creatorcontrib>Hayes, Christopher T. ; Costa, Kassandra M. ; Anderson, Robert F. ; Calvo, Eva ; Chase, Zanna ; Demina, Ludmila L. ; Dutay, Jean‐Claude ; German, Christopher R. ; Heimbürger‐Boavida, Lars‐Eric ; Jaccard, Samuel L. ; Jacobel, Allison ; Kohfeld, Karen E. ; Kravchishina, Marina D. ; Lippold, Jörg ; Mekik, Figen ; Missiaen, Lise ; Pavia, Frank J. ; Paytan, Adina ; Pedrosa‐Pamies, Rut ; Petrova, Mariia V. ; Rahman, Shaily ; Robinson, Laura F. ; Roy‐Barman, Matthieu ; Sanchez‐Vidal, Anna ; Shiller, Alan ; Tagliabue, Alessandro ; Tessin, Allyson C. ; van Hulten, Marco ; Zhang, Jing</creatorcontrib><description>Quantitative knowledge about the burial of sedimentary components at the seafloor has wide‐ranging implications in ocean science, from global climate to continental weathering. The use of 230Th‐normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sediment redistribution by bottom currents and minimizing the impact of age model uncertainty. Here we employ a recently compiled global data set of 230Th‐normalized fluxes with an updated database of seafloor surface sediment composition to derive atlases of the deep‐sea burial flux of calcium carbonate, biogenic opal, total organic carbon (TOC), nonbiogenic material, iron, mercury, and excess barium (Baxs). The spatial patterns of major component burial are mainly consistent with prior work, but the new quantitative estimates allow evaluations of deep‐sea budgets. Our integrated deep‐sea burial fluxes are 136 Tg C/yr CaCO3, 153 Tg Si/yr opal, 20Tg C/yr TOC, 220 Mg Hg/yr, and 2.6 Tg Baxs/yr. This opal flux is roughly a factor of 2 increase over previous estimates, with important implications for the global Si cycle. Sedimentary Fe fluxes reflect a mixture of sources including lithogenic material, hydrothermal inputs and authigenic phases. The fluxes of some commonly used paleo‐productivity proxies (TOC, biogenic opal, and Baxs) are not well‐correlated geographically with satellite‐based productivity estimates. Our new compilation of sedimentary fluxes provides detailed regional and global information, which will help refine the understanding of sediment preservation.
Key Points
Global marine sediment composition (CaCO3, opal, TOC, Fe, Hg, Ba) is presented
Th‐normalized fluxes of major and minor components in the deep sea are constrained
Deep sea budgets and paleo‐proxy applications can be refined with this compilation</description><identifier>ISSN: 0886-6236</identifier><identifier>EISSN: 1944-9224</identifier><identifier>EISSN: 1944-8224</identifier><identifier>DOI: 10.1029/2020GB006769</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Barium ; Bottom currents ; Calcium ; Calcium carbonate ; Calcium carbonates ; carbon cycle ; Carbonates ; Composition ; Continental interfaces, environment ; Deep sea ; Estimates ; Fluctuations ; Fluxes ; Global climate ; Iron ; marine atlas ; Mercury ; Mercury (metal) ; Ocean currents ; Ocean floor ; Ocean, Atmosphere ; Oceans ; Opal ; Organic carbon ; Productivity ; Sciences of the Universe ; Sea currents ; Sediment ; sediment burial ; Sediment composition ; Sediments ; Silicon ; Total organic carbon ; Uncertainty ; Weathering</subject><ispartof>Global biogeochemical cycles, 2021-04, Vol.35 (4), p.n/a</ispartof><rights>2021. The Authors.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4673-73a322318351ec1f3ef408804221fceb85d572cf761096acba734ba1f606495b3</citedby><cites>FETCH-LOGICAL-a4673-73a322318351ec1f3ef408804221fceb85d572cf761096acba734ba1f606495b3</cites><orcidid>0000-0002-0248-9335 ; 0000-0001-8657-8484 ; 0000-0003-3504-4727 ; 0000-0002-8472-2494 ; 0000-0002-5636-2989 ; 0000-0002-5793-0896 ; 0000-0001-9967-2197 ; 0000-0001-7241-1624 ; 0000-0002-2068-7909 ; 0000-0002-3912-7258 ; 0000-0003-3659-4499 ; 0000-0001-8715-638X ; 0000-0002-3045-4949 ; 0000-0002-0679-1347 ; 0000-0002-3572-3634 ; 0000-0001-8360-4712 ; 0000-0002-2409-3104 ; 0000-0001-9967-2891 ; 0000-0003-1976-5065 ; 0000-0002-7660-6151 ; 0000-0001-5060-779X ; 0000-0002-1036-9026 ; 0000-0003-3627-0179 ; 0000-0003-0632-5183 ; 0000-0002-8209-1959 ; 0000-0002-2216-6445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020GB006769$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020GB006769$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03206182$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hayes, Christopher T.</creatorcontrib><creatorcontrib>Costa, Kassandra M.</creatorcontrib><creatorcontrib>Anderson, Robert F.</creatorcontrib><creatorcontrib>Calvo, Eva</creatorcontrib><creatorcontrib>Chase, Zanna</creatorcontrib><creatorcontrib>Demina, Ludmila L.</creatorcontrib><creatorcontrib>Dutay, Jean‐Claude</creatorcontrib><creatorcontrib>German, Christopher R.</creatorcontrib><creatorcontrib>Heimbürger‐Boavida, Lars‐Eric</creatorcontrib><creatorcontrib>Jaccard, Samuel L.</creatorcontrib><creatorcontrib>Jacobel, Allison</creatorcontrib><creatorcontrib>Kohfeld, Karen E.</creatorcontrib><creatorcontrib>Kravchishina, Marina D.</creatorcontrib><creatorcontrib>Lippold, Jörg</creatorcontrib><creatorcontrib>Mekik, Figen</creatorcontrib><creatorcontrib>Missiaen, Lise</creatorcontrib><creatorcontrib>Pavia, Frank J.</creatorcontrib><creatorcontrib>Paytan, Adina</creatorcontrib><creatorcontrib>Pedrosa‐Pamies, Rut</creatorcontrib><creatorcontrib>Petrova, Mariia V.</creatorcontrib><creatorcontrib>Rahman, Shaily</creatorcontrib><creatorcontrib>Robinson, Laura F.</creatorcontrib><creatorcontrib>Roy‐Barman, Matthieu</creatorcontrib><creatorcontrib>Sanchez‐Vidal, Anna</creatorcontrib><creatorcontrib>Shiller, Alan</creatorcontrib><creatorcontrib>Tagliabue, Alessandro</creatorcontrib><creatorcontrib>Tessin, Allyson C.</creatorcontrib><creatorcontrib>van Hulten, Marco</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><title>Global Ocean Sediment Composition and Burial Flux in the Deep Sea</title><title>Global biogeochemical cycles</title><description>Quantitative knowledge about the burial of sedimentary components at the seafloor has wide‐ranging implications in ocean science, from global climate to continental weathering. The use of 230Th‐normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sediment redistribution by bottom currents and minimizing the impact of age model uncertainty. Here we employ a recently compiled global data set of 230Th‐normalized fluxes with an updated database of seafloor surface sediment composition to derive atlases of the deep‐sea burial flux of calcium carbonate, biogenic opal, total organic carbon (TOC), nonbiogenic material, iron, mercury, and excess barium (Baxs). The spatial patterns of major component burial are mainly consistent with prior work, but the new quantitative estimates allow evaluations of deep‐sea budgets. Our integrated deep‐sea burial fluxes are 136 Tg C/yr CaCO3, 153 Tg Si/yr opal, 20Tg C/yr TOC, 220 Mg Hg/yr, and 2.6 Tg Baxs/yr. This opal flux is roughly a factor of 2 increase over previous estimates, with important implications for the global Si cycle. Sedimentary Fe fluxes reflect a mixture of sources including lithogenic material, hydrothermal inputs and authigenic phases. The fluxes of some commonly used paleo‐productivity proxies (TOC, biogenic opal, and Baxs) are not well‐correlated geographically with satellite‐based productivity estimates. Our new compilation of sedimentary fluxes provides detailed regional and global information, which will help refine the understanding of sediment preservation.
Key Points
Global marine sediment composition (CaCO3, opal, TOC, Fe, Hg, Ba) is presented
Th‐normalized fluxes of major and minor components in the deep sea are constrained
Deep sea budgets and paleo‐proxy applications can be refined with this compilation</description><subject>Barium</subject><subject>Bottom currents</subject><subject>Calcium</subject><subject>Calcium carbonate</subject><subject>Calcium carbonates</subject><subject>carbon cycle</subject><subject>Carbonates</subject><subject>Composition</subject><subject>Continental interfaces, environment</subject><subject>Deep sea</subject><subject>Estimates</subject><subject>Fluctuations</subject><subject>Fluxes</subject><subject>Global climate</subject><subject>Iron</subject><subject>marine atlas</subject><subject>Mercury</subject><subject>Mercury (metal)</subject><subject>Ocean currents</subject><subject>Ocean floor</subject><subject>Ocean, Atmosphere</subject><subject>Oceans</subject><subject>Opal</subject><subject>Organic carbon</subject><subject>Productivity</subject><subject>Sciences of the Universe</subject><subject>Sea currents</subject><subject>Sediment</subject><subject>sediment burial</subject><subject>Sediment composition</subject><subject>Sediments</subject><subject>Silicon</subject><subject>Total organic carbon</subject><subject>Uncertainty</subject><subject>Weathering</subject><issn>0886-6236</issn><issn>1944-9224</issn><issn>1944-8224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp90E1Lw0AQBuBFFKzVmz9gwZNgdGa_kj220aZCoQf1vGzSDd2SJjEfav-9KRHx5GlgeOZleAm5RrhHYPqBAYNkDqBCpU_IBLUQgWZMnJIJRJEKFOPqnFy07Q4AhZR6QmZJUaW2oOvM2ZK-uI3fu7KjcbWvq9Z3viqpLTd03jd-UIui_6K-pN3W0Ufn6uHAXpKz3Batu_qZU_K2eHqNl8FqnTzHs1VghQp5EHLLGeMYcYkuw5y7XAxPgWAM88ylkdzIkGV5qBC0sllqQy5Si7kCJbRM-ZTcjrlbW5i68XvbHExlvVnOVua4A85AYcQ-cLA3o62b6r13bWd2Vd-Uw3uGSdQQgpJiUHejypqqbRuX_8YimGOh5m-hA2cj__SFO_xrTTKPGSJy_g14uXJW</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Hayes, Christopher T.</creator><creator>Costa, Kassandra M.</creator><creator>Anderson, Robert F.</creator><creator>Calvo, Eva</creator><creator>Chase, Zanna</creator><creator>Demina, Ludmila L.</creator><creator>Dutay, Jean‐Claude</creator><creator>German, Christopher R.</creator><creator>Heimbürger‐Boavida, Lars‐Eric</creator><creator>Jaccard, Samuel L.</creator><creator>Jacobel, Allison</creator><creator>Kohfeld, Karen E.</creator><creator>Kravchishina, Marina D.</creator><creator>Lippold, Jörg</creator><creator>Mekik, Figen</creator><creator>Missiaen, Lise</creator><creator>Pavia, Frank J.</creator><creator>Paytan, Adina</creator><creator>Pedrosa‐Pamies, Rut</creator><creator>Petrova, Mariia V.</creator><creator>Rahman, Shaily</creator><creator>Robinson, Laura F.</creator><creator>Roy‐Barman, Matthieu</creator><creator>Sanchez‐Vidal, Anna</creator><creator>Shiller, Alan</creator><creator>Tagliabue, Alessandro</creator><creator>Tessin, Allyson C.</creator><creator>van Hulten, Marco</creator><creator>Zhang, Jing</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0248-9335</orcidid><orcidid>https://orcid.org/0000-0001-8657-8484</orcidid><orcidid>https://orcid.org/0000-0003-3504-4727</orcidid><orcidid>https://orcid.org/0000-0002-8472-2494</orcidid><orcidid>https://orcid.org/0000-0002-5636-2989</orcidid><orcidid>https://orcid.org/0000-0002-5793-0896</orcidid><orcidid>https://orcid.org/0000-0001-9967-2197</orcidid><orcidid>https://orcid.org/0000-0001-7241-1624</orcidid><orcidid>https://orcid.org/0000-0002-2068-7909</orcidid><orcidid>https://orcid.org/0000-0002-3912-7258</orcidid><orcidid>https://orcid.org/0000-0003-3659-4499</orcidid><orcidid>https://orcid.org/0000-0001-8715-638X</orcidid><orcidid>https://orcid.org/0000-0002-3045-4949</orcidid><orcidid>https://orcid.org/0000-0002-0679-1347</orcidid><orcidid>https://orcid.org/0000-0002-3572-3634</orcidid><orcidid>https://orcid.org/0000-0001-8360-4712</orcidid><orcidid>https://orcid.org/0000-0002-2409-3104</orcidid><orcidid>https://orcid.org/0000-0001-9967-2891</orcidid><orcidid>https://orcid.org/0000-0003-1976-5065</orcidid><orcidid>https://orcid.org/0000-0002-7660-6151</orcidid><orcidid>https://orcid.org/0000-0001-5060-779X</orcidid><orcidid>https://orcid.org/0000-0002-1036-9026</orcidid><orcidid>https://orcid.org/0000-0003-3627-0179</orcidid><orcidid>https://orcid.org/0000-0003-0632-5183</orcidid><orcidid>https://orcid.org/0000-0002-8209-1959</orcidid><orcidid>https://orcid.org/0000-0002-2216-6445</orcidid></search><sort><creationdate>202104</creationdate><title>Global Ocean Sediment Composition and Burial Flux in the Deep Sea</title><author>Hayes, Christopher T. ; Costa, Kassandra M. ; Anderson, Robert F. ; Calvo, Eva ; Chase, Zanna ; Demina, Ludmila L. ; Dutay, Jean‐Claude ; German, Christopher R. ; Heimbürger‐Boavida, Lars‐Eric ; Jaccard, Samuel L. ; Jacobel, Allison ; Kohfeld, Karen E. ; Kravchishina, Marina D. ; Lippold, Jörg ; Mekik, Figen ; Missiaen, Lise ; Pavia, Frank J. ; Paytan, Adina ; Pedrosa‐Pamies, Rut ; Petrova, Mariia V. ; Rahman, Shaily ; Robinson, Laura F. ; Roy‐Barman, Matthieu ; Sanchez‐Vidal, Anna ; Shiller, Alan ; Tagliabue, Alessandro ; Tessin, Allyson C. ; van Hulten, Marco ; Zhang, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4673-73a322318351ec1f3ef408804221fceb85d572cf761096acba734ba1f606495b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barium</topic><topic>Bottom currents</topic><topic>Calcium</topic><topic>Calcium carbonate</topic><topic>Calcium carbonates</topic><topic>carbon cycle</topic><topic>Carbonates</topic><topic>Composition</topic><topic>Continental interfaces, environment</topic><topic>Deep sea</topic><topic>Estimates</topic><topic>Fluctuations</topic><topic>Fluxes</topic><topic>Global climate</topic><topic>Iron</topic><topic>marine atlas</topic><topic>Mercury</topic><topic>Mercury (metal)</topic><topic>Ocean currents</topic><topic>Ocean floor</topic><topic>Ocean, Atmosphere</topic><topic>Oceans</topic><topic>Opal</topic><topic>Organic carbon</topic><topic>Productivity</topic><topic>Sciences of the Universe</topic><topic>Sea currents</topic><topic>Sediment</topic><topic>sediment burial</topic><topic>Sediment composition</topic><topic>Sediments</topic><topic>Silicon</topic><topic>Total organic carbon</topic><topic>Uncertainty</topic><topic>Weathering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayes, Christopher T.</creatorcontrib><creatorcontrib>Costa, Kassandra M.</creatorcontrib><creatorcontrib>Anderson, Robert F.</creatorcontrib><creatorcontrib>Calvo, Eva</creatorcontrib><creatorcontrib>Chase, Zanna</creatorcontrib><creatorcontrib>Demina, Ludmila L.</creatorcontrib><creatorcontrib>Dutay, Jean‐Claude</creatorcontrib><creatorcontrib>German, Christopher R.</creatorcontrib><creatorcontrib>Heimbürger‐Boavida, Lars‐Eric</creatorcontrib><creatorcontrib>Jaccard, Samuel L.</creatorcontrib><creatorcontrib>Jacobel, Allison</creatorcontrib><creatorcontrib>Kohfeld, Karen E.</creatorcontrib><creatorcontrib>Kravchishina, Marina D.</creatorcontrib><creatorcontrib>Lippold, Jörg</creatorcontrib><creatorcontrib>Mekik, Figen</creatorcontrib><creatorcontrib>Missiaen, Lise</creatorcontrib><creatorcontrib>Pavia, Frank J.</creatorcontrib><creatorcontrib>Paytan, Adina</creatorcontrib><creatorcontrib>Pedrosa‐Pamies, Rut</creatorcontrib><creatorcontrib>Petrova, Mariia V.</creatorcontrib><creatorcontrib>Rahman, Shaily</creatorcontrib><creatorcontrib>Robinson, Laura F.</creatorcontrib><creatorcontrib>Roy‐Barman, Matthieu</creatorcontrib><creatorcontrib>Sanchez‐Vidal, Anna</creatorcontrib><creatorcontrib>Shiller, Alan</creatorcontrib><creatorcontrib>Tagliabue, Alessandro</creatorcontrib><creatorcontrib>Tessin, Allyson C.</creatorcontrib><creatorcontrib>van Hulten, Marco</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Global biogeochemical cycles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayes, Christopher T.</au><au>Costa, Kassandra M.</au><au>Anderson, Robert F.</au><au>Calvo, Eva</au><au>Chase, Zanna</au><au>Demina, Ludmila L.</au><au>Dutay, Jean‐Claude</au><au>German, Christopher R.</au><au>Heimbürger‐Boavida, Lars‐Eric</au><au>Jaccard, Samuel L.</au><au>Jacobel, Allison</au><au>Kohfeld, Karen E.</au><au>Kravchishina, Marina D.</au><au>Lippold, Jörg</au><au>Mekik, Figen</au><au>Missiaen, Lise</au><au>Pavia, Frank J.</au><au>Paytan, Adina</au><au>Pedrosa‐Pamies, Rut</au><au>Petrova, Mariia V.</au><au>Rahman, Shaily</au><au>Robinson, Laura F.</au><au>Roy‐Barman, Matthieu</au><au>Sanchez‐Vidal, Anna</au><au>Shiller, Alan</au><au>Tagliabue, Alessandro</au><au>Tessin, Allyson C.</au><au>van Hulten, Marco</au><au>Zhang, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Ocean Sediment Composition and Burial Flux in the Deep Sea</atitle><jtitle>Global biogeochemical cycles</jtitle><date>2021-04</date><risdate>2021</risdate><volume>35</volume><issue>4</issue><epage>n/a</epage><issn>0886-6236</issn><eissn>1944-9224</eissn><eissn>1944-8224</eissn><abstract>Quantitative knowledge about the burial of sedimentary components at the seafloor has wide‐ranging implications in ocean science, from global climate to continental weathering. The use of 230Th‐normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sediment redistribution by bottom currents and minimizing the impact of age model uncertainty. Here we employ a recently compiled global data set of 230Th‐normalized fluxes with an updated database of seafloor surface sediment composition to derive atlases of the deep‐sea burial flux of calcium carbonate, biogenic opal, total organic carbon (TOC), nonbiogenic material, iron, mercury, and excess barium (Baxs). The spatial patterns of major component burial are mainly consistent with prior work, but the new quantitative estimates allow evaluations of deep‐sea budgets. Our integrated deep‐sea burial fluxes are 136 Tg C/yr CaCO3, 153 Tg Si/yr opal, 20Tg C/yr TOC, 220 Mg Hg/yr, and 2.6 Tg Baxs/yr. This opal flux is roughly a factor of 2 increase over previous estimates, with important implications for the global Si cycle. Sedimentary Fe fluxes reflect a mixture of sources including lithogenic material, hydrothermal inputs and authigenic phases. The fluxes of some commonly used paleo‐productivity proxies (TOC, biogenic opal, and Baxs) are not well‐correlated geographically with satellite‐based productivity estimates. Our new compilation of sedimentary fluxes provides detailed regional and global information, which will help refine the understanding of sediment preservation.
Key Points
Global marine sediment composition (CaCO3, opal, TOC, Fe, Hg, Ba) is presented
Th‐normalized fluxes of major and minor components in the deep sea are constrained
Deep sea budgets and paleo‐proxy applications can be refined with this compilation</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2020GB006769</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-0248-9335</orcidid><orcidid>https://orcid.org/0000-0001-8657-8484</orcidid><orcidid>https://orcid.org/0000-0003-3504-4727</orcidid><orcidid>https://orcid.org/0000-0002-8472-2494</orcidid><orcidid>https://orcid.org/0000-0002-5636-2989</orcidid><orcidid>https://orcid.org/0000-0002-5793-0896</orcidid><orcidid>https://orcid.org/0000-0001-9967-2197</orcidid><orcidid>https://orcid.org/0000-0001-7241-1624</orcidid><orcidid>https://orcid.org/0000-0002-2068-7909</orcidid><orcidid>https://orcid.org/0000-0002-3912-7258</orcidid><orcidid>https://orcid.org/0000-0003-3659-4499</orcidid><orcidid>https://orcid.org/0000-0001-8715-638X</orcidid><orcidid>https://orcid.org/0000-0002-3045-4949</orcidid><orcidid>https://orcid.org/0000-0002-0679-1347</orcidid><orcidid>https://orcid.org/0000-0002-3572-3634</orcidid><orcidid>https://orcid.org/0000-0001-8360-4712</orcidid><orcidid>https://orcid.org/0000-0002-2409-3104</orcidid><orcidid>https://orcid.org/0000-0001-9967-2891</orcidid><orcidid>https://orcid.org/0000-0003-1976-5065</orcidid><orcidid>https://orcid.org/0000-0002-7660-6151</orcidid><orcidid>https://orcid.org/0000-0001-5060-779X</orcidid><orcidid>https://orcid.org/0000-0002-1036-9026</orcidid><orcidid>https://orcid.org/0000-0003-3627-0179</orcidid><orcidid>https://orcid.org/0000-0003-0632-5183</orcidid><orcidid>https://orcid.org/0000-0002-8209-1959</orcidid><orcidid>https://orcid.org/0000-0002-2216-6445</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0886-6236 |
ispartof | Global biogeochemical cycles, 2021-04, Vol.35 (4), p.n/a |
issn | 0886-6236 1944-9224 1944-8224 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03206182v1 |
source | Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | Barium Bottom currents Calcium Calcium carbonate Calcium carbonates carbon cycle Carbonates Composition Continental interfaces, environment Deep sea Estimates Fluctuations Fluxes Global climate Iron marine atlas Mercury Mercury (metal) Ocean currents Ocean floor Ocean, Atmosphere Oceans Opal Organic carbon Productivity Sciences of the Universe Sea currents Sediment sediment burial Sediment composition Sediments Silicon Total organic carbon Uncertainty Weathering |
title | Global Ocean Sediment Composition and Burial Flux in the Deep Sea |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Ocean%20Sediment%20Composition%20and%20Burial%20Flux%20in%20the%20Deep%20Sea&rft.jtitle=Global%20biogeochemical%20cycles&rft.au=Hayes,%20Christopher%20T.&rft.date=2021-04&rft.volume=35&rft.issue=4&rft.epage=n/a&rft.issn=0886-6236&rft.eissn=1944-9224&rft_id=info:doi/10.1029/2020GB006769&rft_dat=%3Cproquest_hal_p%3E2519070654%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519070654&rft_id=info:pmid/&rfr_iscdi=true |