On the contact law of open-cell poro-granular materials
The contact stiffness between a poro-elastic spherical grain, made out of an open-cell foam, and a plane is studied with the aim of determining the contact law, and in particular verifying if the Hertz interaction potential, originally derived in the frame of continuum mechanics, holds. The contact...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2021-01, Vol.208-209, p.83-92 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92 |
---|---|
container_issue | |
container_start_page | 83 |
container_title | International journal of solids and structures |
container_volume | 208-209 |
creator | Hentati, C. Job, S. Crété, J.-Ph Taktak, M. Haddar, M. Dauchez, N. |
description | The contact stiffness between a poro-elastic spherical grain, made out of an open-cell foam, and a plane is studied with the aim of determining the contact law, and in particular verifying if the Hertz interaction potential, originally derived in the frame of continuum mechanics, holds. The contact law is studied experimentally by compressing a half-sphere of melamine foam into a rigid flat surface, and numerically by mean of a finite element model where the porous half-sphere is modeled by irregular tetrakaidecahedral cells. Both approaches reveal two regimes, at low and at high deformations in respect to the size of the cells. Above a cutoff value of the indentation, larger than the ligament length, a Hertzian interaction is observed. The latter is reliably described in terms of the radii of curvature of the contacting bodies and the effective elasticity of the foam structure. Below the cutoff, at the microscale, a more complex trend emerges because of the discrete nature of the foam and in particular the small number of ligaments in contact with the plane, which is function of the sphere radius at the macroscale and the cells shape at the mesoscale. Such microscopic features are akin to a surface roughness between continuous materials. These findings have practical implications to accurately describe the mechanical response of poro-granular media, used for instance in sound and vibration insulation. |
doi_str_mv | 10.1016/j.ijsolstr.2020.10.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03206084v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768320304091</els_id><sourcerecordid>2480001909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-ae0efa70a4193c13e34ceabcb410c848e5eeaaebf59bfe71e53bc960b38b61033</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMcvoEicOCSsH83jRlUBRarUC5wtx91QR2kcbLeIv8dRgCunkWZnRjtDyA2FjALN79vMtN52PriMARvJDBg_ITNaFlXKqMhPyQziJS3ykp-TC-9bABC8ghkpNn0Sdpho2welQ9Kpz8Q2iR2wTzV2XTJYZ9N3p_pDp1yyVwGdUZ2_ImdNBLz-wUvy9vT4ulyl683zy3KxTrVgLKQKARtVgBK04ppy5EKjqnUtKOhSlDhHVArrZl7VDRYU57zWVQ41L-ucAueX5G7K3alODs7slfuSVhm5WqzlyAFnkEMpjjRqbyft4OzHAX2QrT24Pr4nmShjZVpBFVX5pNLOeu-w-YulIMdBZSt_B5XjoCMfB43Gh8mIse_RoJNeG-w1bo1DHeTWmv8ivgFRuIGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480001909</pqid></control><display><type>article</type><title>On the contact law of open-cell poro-granular materials</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hentati, C. ; Job, S. ; Crété, J.-Ph ; Taktak, M. ; Haddar, M. ; Dauchez, N.</creator><creatorcontrib>Hentati, C. ; Job, S. ; Crété, J.-Ph ; Taktak, M. ; Haddar, M. ; Dauchez, N.</creatorcontrib><description>The contact stiffness between a poro-elastic spherical grain, made out of an open-cell foam, and a plane is studied with the aim of determining the contact law, and in particular verifying if the Hertz interaction potential, originally derived in the frame of continuum mechanics, holds. The contact law is studied experimentally by compressing a half-sphere of melamine foam into a rigid flat surface, and numerically by mean of a finite element model where the porous half-sphere is modeled by irregular tetrakaidecahedral cells. Both approaches reveal two regimes, at low and at high deformations in respect to the size of the cells. Above a cutoff value of the indentation, larger than the ligament length, a Hertzian interaction is observed. The latter is reliably described in terms of the radii of curvature of the contacting bodies and the effective elasticity of the foam structure. Below the cutoff, at the microscale, a more complex trend emerges because of the discrete nature of the foam and in particular the small number of ligaments in contact with the plane, which is function of the sphere radius at the macroscale and the cells shape at the mesoscale. Such microscopic features are akin to a surface roughness between continuous materials. These findings have practical implications to accurately describe the mechanical response of poro-granular media, used for instance in sound and vibration insulation.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2020.10.023</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Acoustics ; Contact stiffness ; Continuum mechanics ; Finite element method ; Flat surfaces ; Granular materials ; Granular media ; Hertz law ; Indentation ; Insulation ; Ligaments ; Mathematical models ; Mechanical analysis ; Mechanics ; Melamine ; Open-cell foam ; Physics ; Porous granular material ; Radius of curvature ; Stiffness ; Surface roughness</subject><ispartof>International journal of solids and structures, 2021-01, Vol.208-209, p.83-92</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-ae0efa70a4193c13e34ceabcb410c848e5eeaaebf59bfe71e53bc960b38b61033</citedby><cites>FETCH-LOGICAL-c422t-ae0efa70a4193c13e34ceabcb410c848e5eeaaebf59bfe71e53bc960b38b61033</cites><orcidid>0000-0001-8958-2526 ; 0000-0002-4378-2087 ; 0000-0003-2853-1893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2020.10.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03206084$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hentati, C.</creatorcontrib><creatorcontrib>Job, S.</creatorcontrib><creatorcontrib>Crété, J.-Ph</creatorcontrib><creatorcontrib>Taktak, M.</creatorcontrib><creatorcontrib>Haddar, M.</creatorcontrib><creatorcontrib>Dauchez, N.</creatorcontrib><title>On the contact law of open-cell poro-granular materials</title><title>International journal of solids and structures</title><description>The contact stiffness between a poro-elastic spherical grain, made out of an open-cell foam, and a plane is studied with the aim of determining the contact law, and in particular verifying if the Hertz interaction potential, originally derived in the frame of continuum mechanics, holds. The contact law is studied experimentally by compressing a half-sphere of melamine foam into a rigid flat surface, and numerically by mean of a finite element model where the porous half-sphere is modeled by irregular tetrakaidecahedral cells. Both approaches reveal two regimes, at low and at high deformations in respect to the size of the cells. Above a cutoff value of the indentation, larger than the ligament length, a Hertzian interaction is observed. The latter is reliably described in terms of the radii of curvature of the contacting bodies and the effective elasticity of the foam structure. Below the cutoff, at the microscale, a more complex trend emerges because of the discrete nature of the foam and in particular the small number of ligaments in contact with the plane, which is function of the sphere radius at the macroscale and the cells shape at the mesoscale. Such microscopic features are akin to a surface roughness between continuous materials. These findings have practical implications to accurately describe the mechanical response of poro-granular media, used for instance in sound and vibration insulation.</description><subject>Acoustics</subject><subject>Contact stiffness</subject><subject>Continuum mechanics</subject><subject>Finite element method</subject><subject>Flat surfaces</subject><subject>Granular materials</subject><subject>Granular media</subject><subject>Hertz law</subject><subject>Indentation</subject><subject>Insulation</subject><subject>Ligaments</subject><subject>Mathematical models</subject><subject>Mechanical analysis</subject><subject>Mechanics</subject><subject>Melamine</subject><subject>Open-cell foam</subject><subject>Physics</subject><subject>Porous granular material</subject><subject>Radius of curvature</subject><subject>Stiffness</subject><subject>Surface roughness</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMcvoEicOCSsH83jRlUBRarUC5wtx91QR2kcbLeIv8dRgCunkWZnRjtDyA2FjALN79vMtN52PriMARvJDBg_ITNaFlXKqMhPyQziJS3ykp-TC-9bABC8ghkpNn0Sdpho2welQ9Kpz8Q2iR2wTzV2XTJYZ9N3p_pDp1yyVwGdUZ2_ImdNBLz-wUvy9vT4ulyl683zy3KxTrVgLKQKARtVgBK04ppy5EKjqnUtKOhSlDhHVArrZl7VDRYU57zWVQ41L-ucAueX5G7K3alODs7slfuSVhm5WqzlyAFnkEMpjjRqbyft4OzHAX2QrT24Pr4nmShjZVpBFVX5pNLOeu-w-YulIMdBZSt_B5XjoCMfB43Gh8mIse_RoJNeG-w1bo1DHeTWmv8ivgFRuIGQ</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Hentati, C.</creator><creator>Job, S.</creator><creator>Crété, J.-Ph</creator><creator>Taktak, M.</creator><creator>Haddar, M.</creator><creator>Dauchez, N.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8958-2526</orcidid><orcidid>https://orcid.org/0000-0002-4378-2087</orcidid><orcidid>https://orcid.org/0000-0003-2853-1893</orcidid></search><sort><creationdate>202101</creationdate><title>On the contact law of open-cell poro-granular materials</title><author>Hentati, C. ; Job, S. ; Crété, J.-Ph ; Taktak, M. ; Haddar, M. ; Dauchez, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-ae0efa70a4193c13e34ceabcb410c848e5eeaaebf59bfe71e53bc960b38b61033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Contact stiffness</topic><topic>Continuum mechanics</topic><topic>Finite element method</topic><topic>Flat surfaces</topic><topic>Granular materials</topic><topic>Granular media</topic><topic>Hertz law</topic><topic>Indentation</topic><topic>Insulation</topic><topic>Ligaments</topic><topic>Mathematical models</topic><topic>Mechanical analysis</topic><topic>Mechanics</topic><topic>Melamine</topic><topic>Open-cell foam</topic><topic>Physics</topic><topic>Porous granular material</topic><topic>Radius of curvature</topic><topic>Stiffness</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hentati, C.</creatorcontrib><creatorcontrib>Job, S.</creatorcontrib><creatorcontrib>Crété, J.-Ph</creatorcontrib><creatorcontrib>Taktak, M.</creatorcontrib><creatorcontrib>Haddar, M.</creatorcontrib><creatorcontrib>Dauchez, N.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hentati, C.</au><au>Job, S.</au><au>Crété, J.-Ph</au><au>Taktak, M.</au><au>Haddar, M.</au><au>Dauchez, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the contact law of open-cell poro-granular materials</atitle><jtitle>International journal of solids and structures</jtitle><date>2021-01</date><risdate>2021</risdate><volume>208-209</volume><spage>83</spage><epage>92</epage><pages>83-92</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>The contact stiffness between a poro-elastic spherical grain, made out of an open-cell foam, and a plane is studied with the aim of determining the contact law, and in particular verifying if the Hertz interaction potential, originally derived in the frame of continuum mechanics, holds. The contact law is studied experimentally by compressing a half-sphere of melamine foam into a rigid flat surface, and numerically by mean of a finite element model where the porous half-sphere is modeled by irregular tetrakaidecahedral cells. Both approaches reveal two regimes, at low and at high deformations in respect to the size of the cells. Above a cutoff value of the indentation, larger than the ligament length, a Hertzian interaction is observed. The latter is reliably described in terms of the radii of curvature of the contacting bodies and the effective elasticity of the foam structure. Below the cutoff, at the microscale, a more complex trend emerges because of the discrete nature of the foam and in particular the small number of ligaments in contact with the plane, which is function of the sphere radius at the macroscale and the cells shape at the mesoscale. Such microscopic features are akin to a surface roughness between continuous materials. These findings have practical implications to accurately describe the mechanical response of poro-granular media, used for instance in sound and vibration insulation.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2020.10.023</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8958-2526</orcidid><orcidid>https://orcid.org/0000-0002-4378-2087</orcidid><orcidid>https://orcid.org/0000-0003-2853-1893</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2021-01, Vol.208-209, p.83-92 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03206084v1 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Acoustics Contact stiffness Continuum mechanics Finite element method Flat surfaces Granular materials Granular media Hertz law Indentation Insulation Ligaments Mathematical models Mechanical analysis Mechanics Melamine Open-cell foam Physics Porous granular material Radius of curvature Stiffness Surface roughness |
title | On the contact law of open-cell poro-granular materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A26%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20contact%20law%20of%20open-cell%20poro-granular%20materials&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Hentati,%20C.&rft.date=2021-01&rft.volume=208-209&rft.spage=83&rft.epage=92&rft.pages=83-92&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2020.10.023&rft_dat=%3Cproquest_hal_p%3E2480001909%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480001909&rft_id=info:pmid/&rft_els_id=S0020768320304091&rfr_iscdi=true |