On the contact law of open-cell poro-granular materials

The contact stiffness between a poro-elastic spherical grain, made out of an open-cell foam, and a plane is studied with the aim of determining the contact law, and in particular verifying if the Hertz interaction potential, originally derived in the frame of continuum mechanics, holds. The contact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2021-01, Vol.208-209, p.83-92
Hauptverfasser: Hentati, C., Job, S., Crété, J.-Ph, Taktak, M., Haddar, M., Dauchez, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue
container_start_page 83
container_title International journal of solids and structures
container_volume 208-209
creator Hentati, C.
Job, S.
Crété, J.-Ph
Taktak, M.
Haddar, M.
Dauchez, N.
description The contact stiffness between a poro-elastic spherical grain, made out of an open-cell foam, and a plane is studied with the aim of determining the contact law, and in particular verifying if the Hertz interaction potential, originally derived in the frame of continuum mechanics, holds. The contact law is studied experimentally by compressing a half-sphere of melamine foam into a rigid flat surface, and numerically by mean of a finite element model where the porous half-sphere is modeled by irregular tetrakaidecahedral cells. Both approaches reveal two regimes, at low and at high deformations in respect to the size of the cells. Above a cutoff value of the indentation, larger than the ligament length, a Hertzian interaction is observed. The latter is reliably described in terms of the radii of curvature of the contacting bodies and the effective elasticity of the foam structure. Below the cutoff, at the microscale, a more complex trend emerges because of the discrete nature of the foam and in particular the small number of ligaments in contact with the plane, which is function of the sphere radius at the macroscale and the cells shape at the mesoscale. Such microscopic features are akin to a surface roughness between continuous materials. These findings have practical implications to accurately describe the mechanical response of poro-granular media, used for instance in sound and vibration insulation.
doi_str_mv 10.1016/j.ijsolstr.2020.10.023
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03206084v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768320304091</els_id><sourcerecordid>2480001909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-ae0efa70a4193c13e34ceabcb410c848e5eeaaebf59bfe71e53bc960b38b61033</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMcvoEicOCSsH83jRlUBRarUC5wtx91QR2kcbLeIv8dRgCunkWZnRjtDyA2FjALN79vMtN52PriMARvJDBg_ITNaFlXKqMhPyQziJS3ykp-TC-9bABC8ghkpNn0Sdpho2welQ9Kpz8Q2iR2wTzV2XTJYZ9N3p_pDp1yyVwGdUZ2_ImdNBLz-wUvy9vT4ulyl683zy3KxTrVgLKQKARtVgBK04ppy5EKjqnUtKOhSlDhHVArrZl7VDRYU57zWVQ41L-ucAueX5G7K3alODs7slfuSVhm5WqzlyAFnkEMpjjRqbyft4OzHAX2QrT24Pr4nmShjZVpBFVX5pNLOeu-w-YulIMdBZSt_B5XjoCMfB43Gh8mIse_RoJNeG-w1bo1DHeTWmv8ivgFRuIGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480001909</pqid></control><display><type>article</type><title>On the contact law of open-cell poro-granular materials</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hentati, C. ; Job, S. ; Crété, J.-Ph ; Taktak, M. ; Haddar, M. ; Dauchez, N.</creator><creatorcontrib>Hentati, C. ; Job, S. ; Crété, J.-Ph ; Taktak, M. ; Haddar, M. ; Dauchez, N.</creatorcontrib><description>The contact stiffness between a poro-elastic spherical grain, made out of an open-cell foam, and a plane is studied with the aim of determining the contact law, and in particular verifying if the Hertz interaction potential, originally derived in the frame of continuum mechanics, holds. The contact law is studied experimentally by compressing a half-sphere of melamine foam into a rigid flat surface, and numerically by mean of a finite element model where the porous half-sphere is modeled by irregular tetrakaidecahedral cells. Both approaches reveal two regimes, at low and at high deformations in respect to the size of the cells. Above a cutoff value of the indentation, larger than the ligament length, a Hertzian interaction is observed. The latter is reliably described in terms of the radii of curvature of the contacting bodies and the effective elasticity of the foam structure. Below the cutoff, at the microscale, a more complex trend emerges because of the discrete nature of the foam and in particular the small number of ligaments in contact with the plane, which is function of the sphere radius at the macroscale and the cells shape at the mesoscale. Such microscopic features are akin to a surface roughness between continuous materials. These findings have practical implications to accurately describe the mechanical response of poro-granular media, used for instance in sound and vibration insulation.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2020.10.023</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Acoustics ; Contact stiffness ; Continuum mechanics ; Finite element method ; Flat surfaces ; Granular materials ; Granular media ; Hertz law ; Indentation ; Insulation ; Ligaments ; Mathematical models ; Mechanical analysis ; Mechanics ; Melamine ; Open-cell foam ; Physics ; Porous granular material ; Radius of curvature ; Stiffness ; Surface roughness</subject><ispartof>International journal of solids and structures, 2021-01, Vol.208-209, p.83-92</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-ae0efa70a4193c13e34ceabcb410c848e5eeaaebf59bfe71e53bc960b38b61033</citedby><cites>FETCH-LOGICAL-c422t-ae0efa70a4193c13e34ceabcb410c848e5eeaaebf59bfe71e53bc960b38b61033</cites><orcidid>0000-0001-8958-2526 ; 0000-0002-4378-2087 ; 0000-0003-2853-1893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2020.10.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03206084$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hentati, C.</creatorcontrib><creatorcontrib>Job, S.</creatorcontrib><creatorcontrib>Crété, J.-Ph</creatorcontrib><creatorcontrib>Taktak, M.</creatorcontrib><creatorcontrib>Haddar, M.</creatorcontrib><creatorcontrib>Dauchez, N.</creatorcontrib><title>On the contact law of open-cell poro-granular materials</title><title>International journal of solids and structures</title><description>The contact stiffness between a poro-elastic spherical grain, made out of an open-cell foam, and a plane is studied with the aim of determining the contact law, and in particular verifying if the Hertz interaction potential, originally derived in the frame of continuum mechanics, holds. The contact law is studied experimentally by compressing a half-sphere of melamine foam into a rigid flat surface, and numerically by mean of a finite element model where the porous half-sphere is modeled by irregular tetrakaidecahedral cells. Both approaches reveal two regimes, at low and at high deformations in respect to the size of the cells. Above a cutoff value of the indentation, larger than the ligament length, a Hertzian interaction is observed. The latter is reliably described in terms of the radii of curvature of the contacting bodies and the effective elasticity of the foam structure. Below the cutoff, at the microscale, a more complex trend emerges because of the discrete nature of the foam and in particular the small number of ligaments in contact with the plane, which is function of the sphere radius at the macroscale and the cells shape at the mesoscale. Such microscopic features are akin to a surface roughness between continuous materials. These findings have practical implications to accurately describe the mechanical response of poro-granular media, used for instance in sound and vibration insulation.</description><subject>Acoustics</subject><subject>Contact stiffness</subject><subject>Continuum mechanics</subject><subject>Finite element method</subject><subject>Flat surfaces</subject><subject>Granular materials</subject><subject>Granular media</subject><subject>Hertz law</subject><subject>Indentation</subject><subject>Insulation</subject><subject>Ligaments</subject><subject>Mathematical models</subject><subject>Mechanical analysis</subject><subject>Mechanics</subject><subject>Melamine</subject><subject>Open-cell foam</subject><subject>Physics</subject><subject>Porous granular material</subject><subject>Radius of curvature</subject><subject>Stiffness</subject><subject>Surface roughness</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMcvoEicOCSsH83jRlUBRarUC5wtx91QR2kcbLeIv8dRgCunkWZnRjtDyA2FjALN79vMtN52PriMARvJDBg_ITNaFlXKqMhPyQziJS3ykp-TC-9bABC8ghkpNn0Sdpho2welQ9Kpz8Q2iR2wTzV2XTJYZ9N3p_pDp1yyVwGdUZ2_ImdNBLz-wUvy9vT4ulyl683zy3KxTrVgLKQKARtVgBK04ppy5EKjqnUtKOhSlDhHVArrZl7VDRYU57zWVQ41L-ucAueX5G7K3alODs7slfuSVhm5WqzlyAFnkEMpjjRqbyft4OzHAX2QrT24Pr4nmShjZVpBFVX5pNLOeu-w-YulIMdBZSt_B5XjoCMfB43Gh8mIse_RoJNeG-w1bo1DHeTWmv8ivgFRuIGQ</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Hentati, C.</creator><creator>Job, S.</creator><creator>Crété, J.-Ph</creator><creator>Taktak, M.</creator><creator>Haddar, M.</creator><creator>Dauchez, N.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8958-2526</orcidid><orcidid>https://orcid.org/0000-0002-4378-2087</orcidid><orcidid>https://orcid.org/0000-0003-2853-1893</orcidid></search><sort><creationdate>202101</creationdate><title>On the contact law of open-cell poro-granular materials</title><author>Hentati, C. ; Job, S. ; Crété, J.-Ph ; Taktak, M. ; Haddar, M. ; Dauchez, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-ae0efa70a4193c13e34ceabcb410c848e5eeaaebf59bfe71e53bc960b38b61033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Contact stiffness</topic><topic>Continuum mechanics</topic><topic>Finite element method</topic><topic>Flat surfaces</topic><topic>Granular materials</topic><topic>Granular media</topic><topic>Hertz law</topic><topic>Indentation</topic><topic>Insulation</topic><topic>Ligaments</topic><topic>Mathematical models</topic><topic>Mechanical analysis</topic><topic>Mechanics</topic><topic>Melamine</topic><topic>Open-cell foam</topic><topic>Physics</topic><topic>Porous granular material</topic><topic>Radius of curvature</topic><topic>Stiffness</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hentati, C.</creatorcontrib><creatorcontrib>Job, S.</creatorcontrib><creatorcontrib>Crété, J.-Ph</creatorcontrib><creatorcontrib>Taktak, M.</creatorcontrib><creatorcontrib>Haddar, M.</creatorcontrib><creatorcontrib>Dauchez, N.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hentati, C.</au><au>Job, S.</au><au>Crété, J.-Ph</au><au>Taktak, M.</au><au>Haddar, M.</au><au>Dauchez, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the contact law of open-cell poro-granular materials</atitle><jtitle>International journal of solids and structures</jtitle><date>2021-01</date><risdate>2021</risdate><volume>208-209</volume><spage>83</spage><epage>92</epage><pages>83-92</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>The contact stiffness between a poro-elastic spherical grain, made out of an open-cell foam, and a plane is studied with the aim of determining the contact law, and in particular verifying if the Hertz interaction potential, originally derived in the frame of continuum mechanics, holds. The contact law is studied experimentally by compressing a half-sphere of melamine foam into a rigid flat surface, and numerically by mean of a finite element model where the porous half-sphere is modeled by irregular tetrakaidecahedral cells. Both approaches reveal two regimes, at low and at high deformations in respect to the size of the cells. Above a cutoff value of the indentation, larger than the ligament length, a Hertzian interaction is observed. The latter is reliably described in terms of the radii of curvature of the contacting bodies and the effective elasticity of the foam structure. Below the cutoff, at the microscale, a more complex trend emerges because of the discrete nature of the foam and in particular the small number of ligaments in contact with the plane, which is function of the sphere radius at the macroscale and the cells shape at the mesoscale. Such microscopic features are akin to a surface roughness between continuous materials. These findings have practical implications to accurately describe the mechanical response of poro-granular media, used for instance in sound and vibration insulation.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2020.10.023</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8958-2526</orcidid><orcidid>https://orcid.org/0000-0002-4378-2087</orcidid><orcidid>https://orcid.org/0000-0003-2853-1893</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2021-01, Vol.208-209, p.83-92
issn 0020-7683
1879-2146
language eng
recordid cdi_hal_primary_oai_HAL_hal_03206084v1
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Acoustics
Contact stiffness
Continuum mechanics
Finite element method
Flat surfaces
Granular materials
Granular media
Hertz law
Indentation
Insulation
Ligaments
Mathematical models
Mechanical analysis
Mechanics
Melamine
Open-cell foam
Physics
Porous granular material
Radius of curvature
Stiffness
Surface roughness
title On the contact law of open-cell poro-granular materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A26%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20contact%20law%20of%20open-cell%20poro-granular%20materials&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Hentati,%20C.&rft.date=2021-01&rft.volume=208-209&rft.spage=83&rft.epage=92&rft.pages=83-92&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2020.10.023&rft_dat=%3Cproquest_hal_p%3E2480001909%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480001909&rft_id=info:pmid/&rft_els_id=S0020768320304091&rfr_iscdi=true