Bifractal nature of turbulent reaction waves at high Damköhler and Karlovitz numbers
Governing physical mechanisms of the influence of Kolmogorov turbulence on a reaction wave (e.g., a premixed flame) are often discussed by adopting (combustion) regime diagrams. While two limiting regimes associated with (i) a high Damköhler number Da, but a low Karlovitz number Ka, or (ii) a low Da...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2020-09, Vol.32 (9) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 32 |
creator | Sabelnikov, V. A. Lipatnikov, A. N. |
description | Governing physical mechanisms of the influence of Kolmogorov turbulence on a reaction wave (e.g., a premixed flame) are often discussed by adopting (combustion) regime diagrams. While two limiting regimes associated with (i) a high Damköhler number Da, but a low Karlovitz number Ka, or (ii) a low Da, but a high Ka drew significant amount of attention, the third limiting regime associated with (iii) Da ≫ 1 and Ka ≫ 1 has yet been beyond the mainstream discussions in the literature. The present work aims at filling this knowledge gap by adapting the contemporary understanding of the fundamentals of the regimes (i) and (ii) in order to describe the basic features of the influence of intense turbulence on a reaction wave in the regime (iii). More specifically, in that regime, the entire turbulence spectrum is divided in two subranges: small-scale and large-scale eddies whose influence on the reaction wave is modeled similarly to the regimes (ii) and (i), respectively. Accordingly, the surface of the reaction wave is hypothesized to be a bifractal with two different fractal dimensions of Df = 8/3 and 7/3 at small and large scales, respectively. The boundary between the two ranges is found by equating the local eddy turn-over time to the laminar-wave time scale. Finally, a simple scaling of UT ∝ u′ is obtained for the turbulent consumption velocity at Da ≫ 1 and Ka ≫ 1. Here, u′ is the rms turbulent velocity. |
doi_str_mv | 10.1063/5.0020384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03205389v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2443945467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-100d9499d798dfb7f8a3af04db6115b17ce3d7039d3e2eb3499c0b78012304223</originalsourceid><addsrcrecordid>eNqdkc1u1DAQgCMEEqVw4A0scQIpZfwTOz6WFlrUlXooPVvjP5KSTRY72QoejBfgxerVrqh65TQjz-dP81NVbymcUJD8Y3MCwIC34ll1RKHVtZJSPt_lCmopOX1Zvcr5DgC4ZvKouv3Ux4RuxoGMOC8pkCmSEu0yhHEmKZRaP43kHrchE5xJ13_vyDmuf_z90w0hERw9ucI0TNt-_k3GZW1Dyq-rFxGHHN4c4nF1--Xzt7PLenV98fXsdFU7odhcUwCvhdZe6dZHq2KLHCMIbyWljaXKBe5V6dTzwILlBXVgVQuUcRCM8ePqZu_N92GzWLNJ_RrTLzNhb1LIAZPrjOtwWJemTA5GUR-9Fc5Eq8EIT5XBVjkjGyEiY0HTRhbr-721fHyivDxdmd0bcAYNb_WWFvbdnt2k6ecS8mzupiWNZWjDhOBaNEKqR6NLU84pxH9aCmZ3N9OYw90K--Ewk-tn3C3__-DtlB5Bs_GRPwBDLqWO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443945467</pqid></control><display><type>article</type><title>Bifractal nature of turbulent reaction waves at high Damköhler and Karlovitz numbers</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Sabelnikov, V. A. ; Lipatnikov, A. N.</creator><creatorcontrib>Sabelnikov, V. A. ; Lipatnikov, A. N.</creatorcontrib><description>Governing physical mechanisms of the influence of Kolmogorov turbulence on a reaction wave (e.g., a premixed flame) are often discussed by adopting (combustion) regime diagrams. While two limiting regimes associated with (i) a high Damköhler number Da, but a low Karlovitz number Ka, or (ii) a low Da, but a high Ka drew significant amount of attention, the third limiting regime associated with (iii) Da ≫ 1 and Ka ≫ 1 has yet been beyond the mainstream discussions in the literature. The present work aims at filling this knowledge gap by adapting the contemporary understanding of the fundamentals of the regimes (i) and (ii) in order to describe the basic features of the influence of intense turbulence on a reaction wave in the regime (iii). More specifically, in that regime, the entire turbulence spectrum is divided in two subranges: small-scale and large-scale eddies whose influence on the reaction wave is modeled similarly to the regimes (ii) and (i), respectively. Accordingly, the surface of the reaction wave is hypothesized to be a bifractal with two different fractal dimensions of Df = 8/3 and 7/3 at small and large scales, respectively. The boundary between the two ranges is found by equating the local eddy turn-over time to the laminar-wave time scale. Finally, a simple scaling of UT ∝ u′ is obtained for the turbulent consumption velocity at Da ≫ 1 and Ka ≫ 1. Here, u′ is the rms turbulent velocity.</description><identifier>ISSN: 1070-6631</identifier><identifier>ISSN: 1089-7666</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0020384</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Constraining ; Fluid dynamics ; Fluid mechanics ; Fractal geometry ; Mechanics ; Physics ; Premixed flames ; Turbulence</subject><ispartof>Physics of fluids (1994), 2020-09, Vol.32 (9)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-100d9499d798dfb7f8a3af04db6115b17ce3d7039d3e2eb3499c0b78012304223</citedby><cites>FETCH-LOGICAL-c472t-100d9499d798dfb7f8a3af04db6115b17ce3d7039d3e2eb3499c0b78012304223</cites><orcidid>0000-0001-5682-4947 ; 0000-0002-0979-2994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,794,885,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03205389$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://research.chalmers.se/publication/519729$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sabelnikov, V. A.</creatorcontrib><creatorcontrib>Lipatnikov, A. N.</creatorcontrib><title>Bifractal nature of turbulent reaction waves at high Damköhler and Karlovitz numbers</title><title>Physics of fluids (1994)</title><description>Governing physical mechanisms of the influence of Kolmogorov turbulence on a reaction wave (e.g., a premixed flame) are often discussed by adopting (combustion) regime diagrams. While two limiting regimes associated with (i) a high Damköhler number Da, but a low Karlovitz number Ka, or (ii) a low Da, but a high Ka drew significant amount of attention, the third limiting regime associated with (iii) Da ≫ 1 and Ka ≫ 1 has yet been beyond the mainstream discussions in the literature. The present work aims at filling this knowledge gap by adapting the contemporary understanding of the fundamentals of the regimes (i) and (ii) in order to describe the basic features of the influence of intense turbulence on a reaction wave in the regime (iii). More specifically, in that regime, the entire turbulence spectrum is divided in two subranges: small-scale and large-scale eddies whose influence on the reaction wave is modeled similarly to the regimes (ii) and (i), respectively. Accordingly, the surface of the reaction wave is hypothesized to be a bifractal with two different fractal dimensions of Df = 8/3 and 7/3 at small and large scales, respectively. The boundary between the two ranges is found by equating the local eddy turn-over time to the laminar-wave time scale. Finally, a simple scaling of UT ∝ u′ is obtained for the turbulent consumption velocity at Da ≫ 1 and Ka ≫ 1. Here, u′ is the rms turbulent velocity.</description><subject>Constraining</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fractal geometry</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Premixed flames</subject><subject>Turbulence</subject><issn>1070-6631</issn><issn>1089-7666</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdkc1u1DAQgCMEEqVw4A0scQIpZfwTOz6WFlrUlXooPVvjP5KSTRY72QoejBfgxerVrqh65TQjz-dP81NVbymcUJD8Y3MCwIC34ll1RKHVtZJSPt_lCmopOX1Zvcr5DgC4ZvKouv3Ux4RuxoGMOC8pkCmSEu0yhHEmKZRaP43kHrchE5xJ13_vyDmuf_z90w0hERw9ucI0TNt-_k3GZW1Dyq-rFxGHHN4c4nF1--Xzt7PLenV98fXsdFU7odhcUwCvhdZe6dZHq2KLHCMIbyWljaXKBe5V6dTzwILlBXVgVQuUcRCM8ePqZu_N92GzWLNJ_RrTLzNhb1LIAZPrjOtwWJemTA5GUR-9Fc5Eq8EIT5XBVjkjGyEiY0HTRhbr-721fHyivDxdmd0bcAYNb_WWFvbdnt2k6ecS8mzupiWNZWjDhOBaNEKqR6NLU84pxH9aCmZ3N9OYw90K--Ewk-tn3C3__-DtlB5Bs_GRPwBDLqWO</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Sabelnikov, V. A.</creator><creator>Lipatnikov, A. N.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1S</scope><orcidid>https://orcid.org/0000-0001-5682-4947</orcidid><orcidid>https://orcid.org/0000-0002-0979-2994</orcidid></search><sort><creationdate>20200901</creationdate><title>Bifractal nature of turbulent reaction waves at high Damköhler and Karlovitz numbers</title><author>Sabelnikov, V. A. ; Lipatnikov, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-100d9499d798dfb7f8a3af04db6115b17ce3d7039d3e2eb3499c0b78012304223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Constraining</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fractal geometry</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Premixed flames</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabelnikov, V. A.</creatorcontrib><creatorcontrib>Lipatnikov, A. N.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabelnikov, V. A.</au><au>Lipatnikov, A. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifractal nature of turbulent reaction waves at high Damköhler and Karlovitz numbers</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>32</volume><issue>9</issue><issn>1070-6631</issn><issn>1089-7666</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Governing physical mechanisms of the influence of Kolmogorov turbulence on a reaction wave (e.g., a premixed flame) are often discussed by adopting (combustion) regime diagrams. While two limiting regimes associated with (i) a high Damköhler number Da, but a low Karlovitz number Ka, or (ii) a low Da, but a high Ka drew significant amount of attention, the third limiting regime associated with (iii) Da ≫ 1 and Ka ≫ 1 has yet been beyond the mainstream discussions in the literature. The present work aims at filling this knowledge gap by adapting the contemporary understanding of the fundamentals of the regimes (i) and (ii) in order to describe the basic features of the influence of intense turbulence on a reaction wave in the regime (iii). More specifically, in that regime, the entire turbulence spectrum is divided in two subranges: small-scale and large-scale eddies whose influence on the reaction wave is modeled similarly to the regimes (ii) and (i), respectively. Accordingly, the surface of the reaction wave is hypothesized to be a bifractal with two different fractal dimensions of Df = 8/3 and 7/3 at small and large scales, respectively. The boundary between the two ranges is found by equating the local eddy turn-over time to the laminar-wave time scale. Finally, a simple scaling of UT ∝ u′ is obtained for the turbulent consumption velocity at Da ≫ 1 and Ka ≫ 1. Here, u′ is the rms turbulent velocity.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0020384</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5682-4947</orcidid><orcidid>https://orcid.org/0000-0002-0979-2994</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2020-09, Vol.32 (9) |
issn | 1070-6631 1089-7666 1089-7666 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03205389v1 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Constraining Fluid dynamics Fluid mechanics Fractal geometry Mechanics Physics Premixed flames Turbulence |
title | Bifractal nature of turbulent reaction waves at high Damköhler and Karlovitz numbers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifractal%20nature%20of%20turbulent%20reaction%20waves%20at%20high%20Damk%C3%B6hler%20and%20Karlovitz%20numbers&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Sabelnikov,%20V.%20A.&rft.date=2020-09-01&rft.volume=32&rft.issue=9&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0020384&rft_dat=%3Cproquest_hal_p%3E2443945467%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443945467&rft_id=info:pmid/&rfr_iscdi=true |