The spatial and temporal complexity of the Holocene thermal maximum
The period of relatively warm climate from 11,000 to 5,000 years ago was marked by considerable temporal and spatial variability. Model simulations relate this complexity to the influence of the waning Laurentide ice sheet. The Holocene thermal maximum, a period of relatively warm climate between 11...
Gespeichert in:
Veröffentlicht in: | Nature geoscience 2009-06, Vol.2 (6), p.411-414 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 414 |
---|---|
container_issue | 6 |
container_start_page | 411 |
container_title | Nature geoscience |
container_volume | 2 |
creator | Renssen, H. Seppä, H. Heiri, O. Roche, D. M. Goosse, H. Fichefet, T. |
description | The period of relatively warm climate from 11,000 to 5,000 years ago was marked by considerable temporal and spatial variability. Model simulations relate this complexity to the influence of the waning Laurentide ice sheet.
The Holocene thermal maximum, a period of relatively warm climate between 11,000 and 5,000 years ago
1
,
2
, is most clearly recorded in the middle and high latitudes
2
,
3
of the Northern Hemisphere, where it is generally associated with the local orbitally forced summer insolation maximum. However, proxy-based reconstructions have shown that both the timing and magnitude of the warming vary substantially between different regions
2
,
3
,
4
, suggesting the involvement of extra feedbacks and forcings. Here, we simulate the Holocene thermal maximum in a coupled global ocean–atmosphere–vegetation model. We find that before 7,000 years ago, summers were substantially cooler over regions directly influenced by the presence of the Laurentide ice sheet, whereas other regions of the Northern Hemisphere were dominated by orbital forcing. Our simulations suggest that the cool conditions arose from a combination of the inhibition of Labrador Sea deep convection by the flux of meltwater from the ice sheet, which weakened northward heat transport by the ocean, and the high surface albedo of the ice sheet. We thus conclude that interglacial climate is highly sensitive to relatively small changes in ice-sheet configuration. |
doi_str_mv | 10.1038/ngeo513 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03199111v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721226981</sourcerecordid><originalsourceid>FETCH-LOGICAL-a495t-5498bcc0e06b02e4577c27e2425c0a6b64c7d92dcbbd52ca4c40e37db7af00cd3</originalsourceid><addsrcrecordid>eNpd0N9LwzAQB_AgCs4p_gsFwR8P00uaNM3jGOqEgS_zOaRp6jrapiatbP-9KZ2iPl3u-PA9cghdYrjHEKcPzbuxDMdHaII5IzMQkB5_v1NBT9GZ91uABChnE7RYb0zkW9WVqopUk0edqVvrQqNt3VZmV3b7yBZRF9jSVlabxgyNqwOp1a6s-_ocnRSq8ubiUKfo7elxvVjOVq_PL4v5aqaoYN2MUZFmWoOBJANiKONcE24IJUyDSrKEap4LkussyxnRimoKJuZ5xlUBoPN4iu7G3I2qZOvKWrm9tKqUy_lKDjOIsRAY408c7PVoW2c_euM7WZdem6pSjbG9lwQSQkGkAV79g1vbuyb8Q4ZzAqQsJkPczai0s947U_zsxzC4VB7OHuTtKH0QYeh-5_2lX1rWgdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030085321</pqid></control><display><type>article</type><title>The spatial and temporal complexity of the Holocene thermal maximum</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Renssen, H. ; Seppä, H. ; Heiri, O. ; Roche, D. M. ; Goosse, H. ; Fichefet, T.</creator><creatorcontrib>Renssen, H. ; Seppä, H. ; Heiri, O. ; Roche, D. M. ; Goosse, H. ; Fichefet, T.</creatorcontrib><description>The period of relatively warm climate from 11,000 to 5,000 years ago was marked by considerable temporal and spatial variability. Model simulations relate this complexity to the influence of the waning Laurentide ice sheet.
The Holocene thermal maximum, a period of relatively warm climate between 11,000 and 5,000 years ago
1
,
2
, is most clearly recorded in the middle and high latitudes
2
,
3
of the Northern Hemisphere, where it is generally associated with the local orbitally forced summer insolation maximum. However, proxy-based reconstructions have shown that both the timing and magnitude of the warming vary substantially between different regions
2
,
3
,
4
, suggesting the involvement of extra feedbacks and forcings. Here, we simulate the Holocene thermal maximum in a coupled global ocean–atmosphere–vegetation model. We find that before 7,000 years ago, summers were substantially cooler over regions directly influenced by the presence of the Laurentide ice sheet, whereas other regions of the Northern Hemisphere were dominated by orbital forcing. Our simulations suggest that the cool conditions arose from a combination of the inhibition of Labrador Sea deep convection by the flux of meltwater from the ice sheet, which weakened northward heat transport by the ocean, and the high surface albedo of the ice sheet. We thus conclude that interglacial climate is highly sensitive to relatively small changes in ice-sheet configuration.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/ngeo513</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Albedo ; Continental interfaces, environment ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Geochemistry ; Geology ; Geophysics/Geodesy ; Heat transport ; Holocene ; Ice ; letter ; Marine ; Meltwater ; Ocean, Atmosphere ; Sciences of the Universe</subject><ispartof>Nature geoscience, 2009-06, Vol.2 (6), p.411-414</ispartof><rights>Springer Nature Limited 2009</rights><rights>Copyright Nature Publishing Group Jun 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a495t-5498bcc0e06b02e4577c27e2425c0a6b64c7d92dcbbd52ca4c40e37db7af00cd3</citedby><cites>FETCH-LOGICAL-a495t-5498bcc0e06b02e4577c27e2425c0a6b64c7d92dcbbd52ca4c40e37db7af00cd3</cites><orcidid>0000-0001-6272-9428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ngeo513$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ngeo513$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03199111$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Renssen, H.</creatorcontrib><creatorcontrib>Seppä, H.</creatorcontrib><creatorcontrib>Heiri, O.</creatorcontrib><creatorcontrib>Roche, D. M.</creatorcontrib><creatorcontrib>Goosse, H.</creatorcontrib><creatorcontrib>Fichefet, T.</creatorcontrib><title>The spatial and temporal complexity of the Holocene thermal maximum</title><title>Nature geoscience</title><addtitle>Nature Geosci</addtitle><description>The period of relatively warm climate from 11,000 to 5,000 years ago was marked by considerable temporal and spatial variability. Model simulations relate this complexity to the influence of the waning Laurentide ice sheet.
The Holocene thermal maximum, a period of relatively warm climate between 11,000 and 5,000 years ago
1
,
2
, is most clearly recorded in the middle and high latitudes
2
,
3
of the Northern Hemisphere, where it is generally associated with the local orbitally forced summer insolation maximum. However, proxy-based reconstructions have shown that both the timing and magnitude of the warming vary substantially between different regions
2
,
3
,
4
, suggesting the involvement of extra feedbacks and forcings. Here, we simulate the Holocene thermal maximum in a coupled global ocean–atmosphere–vegetation model. We find that before 7,000 years ago, summers were substantially cooler over regions directly influenced by the presence of the Laurentide ice sheet, whereas other regions of the Northern Hemisphere were dominated by orbital forcing. Our simulations suggest that the cool conditions arose from a combination of the inhibition of Labrador Sea deep convection by the flux of meltwater from the ice sheet, which weakened northward heat transport by the ocean, and the high surface albedo of the ice sheet. We thus conclude that interglacial climate is highly sensitive to relatively small changes in ice-sheet configuration.</description><subject>Albedo</subject><subject>Continental interfaces, environment</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Heat transport</subject><subject>Holocene</subject><subject>Ice</subject><subject>letter</subject><subject>Marine</subject><subject>Meltwater</subject><subject>Ocean, Atmosphere</subject><subject>Sciences of the Universe</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpd0N9LwzAQB_AgCs4p_gsFwR8P00uaNM3jGOqEgS_zOaRp6jrapiatbP-9KZ2iPl3u-PA9cghdYrjHEKcPzbuxDMdHaII5IzMQkB5_v1NBT9GZ91uABChnE7RYb0zkW9WVqopUk0edqVvrQqNt3VZmV3b7yBZRF9jSVlabxgyNqwOp1a6s-_ocnRSq8ubiUKfo7elxvVjOVq_PL4v5aqaoYN2MUZFmWoOBJANiKONcE24IJUyDSrKEap4LkussyxnRimoKJuZ5xlUBoPN4iu7G3I2qZOvKWrm9tKqUy_lKDjOIsRAY408c7PVoW2c_euM7WZdem6pSjbG9lwQSQkGkAV79g1vbuyb8Q4ZzAqQsJkPczai0s947U_zsxzC4VB7OHuTtKH0QYeh-5_2lX1rWgdQ</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Renssen, H.</creator><creator>Seppä, H.</creator><creator>Heiri, O.</creator><creator>Roche, D. M.</creator><creator>Goosse, H.</creator><creator>Fichefet, T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6272-9428</orcidid></search><sort><creationdate>20090601</creationdate><title>The spatial and temporal complexity of the Holocene thermal maximum</title><author>Renssen, H. ; Seppä, H. ; Heiri, O. ; Roche, D. M. ; Goosse, H. ; Fichefet, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a495t-5498bcc0e06b02e4577c27e2425c0a6b64c7d92dcbbd52ca4c40e37db7af00cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Albedo</topic><topic>Continental interfaces, environment</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Heat transport</topic><topic>Holocene</topic><topic>Ice</topic><topic>letter</topic><topic>Marine</topic><topic>Meltwater</topic><topic>Ocean, Atmosphere</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renssen, H.</creatorcontrib><creatorcontrib>Seppä, H.</creatorcontrib><creatorcontrib>Heiri, O.</creatorcontrib><creatorcontrib>Roche, D. M.</creatorcontrib><creatorcontrib>Goosse, H.</creatorcontrib><creatorcontrib>Fichefet, T.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renssen, H.</au><au>Seppä, H.</au><au>Heiri, O.</au><au>Roche, D. M.</au><au>Goosse, H.</au><au>Fichefet, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The spatial and temporal complexity of the Holocene thermal maximum</atitle><jtitle>Nature geoscience</jtitle><stitle>Nature Geosci</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>2</volume><issue>6</issue><spage>411</spage><epage>414</epage><pages>411-414</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>The period of relatively warm climate from 11,000 to 5,000 years ago was marked by considerable temporal and spatial variability. Model simulations relate this complexity to the influence of the waning Laurentide ice sheet.
The Holocene thermal maximum, a period of relatively warm climate between 11,000 and 5,000 years ago
1
,
2
, is most clearly recorded in the middle and high latitudes
2
,
3
of the Northern Hemisphere, where it is generally associated with the local orbitally forced summer insolation maximum. However, proxy-based reconstructions have shown that both the timing and magnitude of the warming vary substantially between different regions
2
,
3
,
4
, suggesting the involvement of extra feedbacks and forcings. Here, we simulate the Holocene thermal maximum in a coupled global ocean–atmosphere–vegetation model. We find that before 7,000 years ago, summers were substantially cooler over regions directly influenced by the presence of the Laurentide ice sheet, whereas other regions of the Northern Hemisphere were dominated by orbital forcing. Our simulations suggest that the cool conditions arose from a combination of the inhibition of Labrador Sea deep convection by the flux of meltwater from the ice sheet, which weakened northward heat transport by the ocean, and the high surface albedo of the ice sheet. We thus conclude that interglacial climate is highly sensitive to relatively small changes in ice-sheet configuration.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/ngeo513</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-6272-9428</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1752-0894 |
ispartof | Nature geoscience, 2009-06, Vol.2 (6), p.411-414 |
issn | 1752-0894 1752-0908 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03199111v1 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | Albedo Continental interfaces, environment Earth and Environmental Science Earth Sciences Earth System Sciences Geochemistry Geology Geophysics/Geodesy Heat transport Holocene Ice letter Marine Meltwater Ocean, Atmosphere Sciences of the Universe |
title | The spatial and temporal complexity of the Holocene thermal maximum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A06%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20spatial%20and%20temporal%20complexity%20of%20the%20Holocene%20thermal%20maximum&rft.jtitle=Nature%20geoscience&rft.au=Renssen,%20H.&rft.date=2009-06-01&rft.volume=2&rft.issue=6&rft.spage=411&rft.epage=414&rft.pages=411-414&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/ngeo513&rft_dat=%3Cproquest_hal_p%3E2721226981%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030085321&rft_id=info:pmid/&rfr_iscdi=true |