Review on spintronics: Principles and device applications
[Display omitted] •Broad overview on eight major methods for spin generation is given with their physical principles.•Corresponding device applications are discussed based on their recent development.•Future perspectives on the spintronic devices are provided at the end of this review. Spintronics i...
Gespeichert in:
Veröffentlicht in: | Journal of magnetism and magnetic materials 2020-09, Vol.509, p.166711, Article 166711 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 166711 |
container_title | Journal of magnetism and magnetic materials |
container_volume | 509 |
creator | Hirohata, Atsufumi Yamada, Keisuke Nakatani, Yoshinobu Prejbeanu, Ioan-Lucian Diény, Bernard Pirro, Philipp Hillebrands, Burkard |
description | [Display omitted]
•Broad overview on eight major methods for spin generation is given with their physical principles.•Corresponding device applications are discussed based on their recent development.•Future perspectives on the spintronic devices are provided at the end of this review.
Spintronics is one of the emerging fields for the next-generation nanoelectronic devices to reduce their power consumption and to increase their memory and processing capabilities. Such devices utilise the spin degree of freedom of electrons and/or holes, which can also interact with their orbital moments. In these devices, the spin polarisation is controlled either by magnetic layers used as spin-polarisers or analysers or via spin–orbit coupling. Spin waves can also be used to carry spin current. In this review, the fundamental physics of these phenomena is described first with respect to the spin generation methods as detailed in Sections 2 ~ 9. The recent development in their device applications then follows in Sections 10 and 11. Future perspectives are provided at the end. |
doi_str_mv | 10.1016/j.jmmm.2020.166711 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03192774v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885320302353</els_id><sourcerecordid>2442964293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-5bf8c5c74e5d67b030505ba0d4f6f86c537472d10cb45409e1e0f123fa4c56963</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8FTx665juteFkWdYUFRfQc0jTFlDapSXfFf29KxaOHYWB43mHmAeASwRWCiN-0q7bv-xWGOA04FwgdgQUqBMmp4PwYLCCBNC8KRk7BWYwthBDRgi9A-WoO1nxl3mVxsG4M3lkdb7OXYJ22Q2diplyd1YnSJlPD0FmtRutdPAcnjeqiufjtS_D-cP-22ea758enzXqXawr5mLOqKTTTghpWc1GlOxhklYI1bXhTcM2IoALXCOqKMgpLgwxsECaNoprxkpMluJ73fqhODsH2KnxLr6zcrndymkGCSiwEPaDEXs3sEPzn3sRRtn4fXDpPYkpxyVORROGZ0sHHGEzztxZBOemUrZx0ykmnnHWm0N0cMunXpCzIqK1x2tQ2GD3K2tv_4j_b_Hvi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442964293</pqid></control><display><type>article</type><title>Review on spintronics: Principles and device applications</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hirohata, Atsufumi ; Yamada, Keisuke ; Nakatani, Yoshinobu ; Prejbeanu, Ioan-Lucian ; Diény, Bernard ; Pirro, Philipp ; Hillebrands, Burkard</creator><creatorcontrib>Hirohata, Atsufumi ; Yamada, Keisuke ; Nakatani, Yoshinobu ; Prejbeanu, Ioan-Lucian ; Diény, Bernard ; Pirro, Philipp ; Hillebrands, Burkard</creatorcontrib><description>[Display omitted]
•Broad overview on eight major methods for spin generation is given with their physical principles.•Corresponding device applications are discussed based on their recent development.•Future perspectives on the spintronic devices are provided at the end of this review.
Spintronics is one of the emerging fields for the next-generation nanoelectronic devices to reduce their power consumption and to increase their memory and processing capabilities. Such devices utilise the spin degree of freedom of electrons and/or holes, which can also interact with their orbital moments. In these devices, the spin polarisation is controlled either by magnetic layers used as spin-polarisers or analysers or via spin–orbit coupling. Spin waves can also be used to carry spin current. In this review, the fundamental physics of these phenomena is described first with respect to the spin generation methods as detailed in Sections 2 ~ 9. The recent development in their device applications then follows in Sections 10 and 11. Future perspectives are provided at the end.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2020.166711</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Dzyaloshinskii–Moriya interaction ; Electric field ; Electromagnetic wave ; Electron spin ; Hard disk drive ; Landau-Lifshits-Gilbert equation ; Magnetic damping ; Magnetic random access memory ; Magnetic sensor ; Magnetic skyrmion ; Magnons ; Nanoelectronics ; Nanotechnology devices ; Neuromorphic ; Physics ; Polarization (spin alignment) ; Power consumption ; Racetrack memory ; Spin Hall effects ; Spin Nernst effect ; Spin Seebeck effect ; Spin-current generation ; Spin-orbit effects ; Spin-orbit interactions ; Spin-transfer torque ; Spintronics</subject><ispartof>Journal of magnetism and magnetic materials, 2020-09, Vol.509, p.166711, Article 166711</ispartof><rights>2020 The Authors</rights><rights>Copyright Elsevier BV Sep 1, 2020</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-5bf8c5c74e5d67b030505ba0d4f6f86c537472d10cb45409e1e0f123fa4c56963</citedby><cites>FETCH-LOGICAL-c406t-5bf8c5c74e5d67b030505ba0d4f6f86c537472d10cb45409e1e0f123fa4c56963</cites><orcidid>0000-0002-0575-5301 ; 0000-0001-6577-032X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmmm.2020.166711$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03192774$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirohata, Atsufumi</creatorcontrib><creatorcontrib>Yamada, Keisuke</creatorcontrib><creatorcontrib>Nakatani, Yoshinobu</creatorcontrib><creatorcontrib>Prejbeanu, Ioan-Lucian</creatorcontrib><creatorcontrib>Diény, Bernard</creatorcontrib><creatorcontrib>Pirro, Philipp</creatorcontrib><creatorcontrib>Hillebrands, Burkard</creatorcontrib><title>Review on spintronics: Principles and device applications</title><title>Journal of magnetism and magnetic materials</title><description>[Display omitted]
•Broad overview on eight major methods for spin generation is given with their physical principles.•Corresponding device applications are discussed based on their recent development.•Future perspectives on the spintronic devices are provided at the end of this review.
Spintronics is one of the emerging fields for the next-generation nanoelectronic devices to reduce their power consumption and to increase their memory and processing capabilities. Such devices utilise the spin degree of freedom of electrons and/or holes, which can also interact with their orbital moments. In these devices, the spin polarisation is controlled either by magnetic layers used as spin-polarisers or analysers or via spin–orbit coupling. Spin waves can also be used to carry spin current. In this review, the fundamental physics of these phenomena is described first with respect to the spin generation methods as detailed in Sections 2 ~ 9. The recent development in their device applications then follows in Sections 10 and 11. Future perspectives are provided at the end.</description><subject>Dzyaloshinskii–Moriya interaction</subject><subject>Electric field</subject><subject>Electromagnetic wave</subject><subject>Electron spin</subject><subject>Hard disk drive</subject><subject>Landau-Lifshits-Gilbert equation</subject><subject>Magnetic damping</subject><subject>Magnetic random access memory</subject><subject>Magnetic sensor</subject><subject>Magnetic skyrmion</subject><subject>Magnons</subject><subject>Nanoelectronics</subject><subject>Nanotechnology devices</subject><subject>Neuromorphic</subject><subject>Physics</subject><subject>Polarization (spin alignment)</subject><subject>Power consumption</subject><subject>Racetrack memory</subject><subject>Spin Hall effects</subject><subject>Spin Nernst effect</subject><subject>Spin Seebeck effect</subject><subject>Spin-current generation</subject><subject>Spin-orbit effects</subject><subject>Spin-orbit interactions</subject><subject>Spin-transfer torque</subject><subject>Spintronics</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8FTx665juteFkWdYUFRfQc0jTFlDapSXfFf29KxaOHYWB43mHmAeASwRWCiN-0q7bv-xWGOA04FwgdgQUqBMmp4PwYLCCBNC8KRk7BWYwthBDRgi9A-WoO1nxl3mVxsG4M3lkdb7OXYJ22Q2diplyd1YnSJlPD0FmtRutdPAcnjeqiufjtS_D-cP-22ea758enzXqXawr5mLOqKTTTghpWc1GlOxhklYI1bXhTcM2IoALXCOqKMgpLgwxsECaNoprxkpMluJ73fqhODsH2KnxLr6zcrndymkGCSiwEPaDEXs3sEPzn3sRRtn4fXDpPYkpxyVORROGZ0sHHGEzztxZBOemUrZx0ykmnnHWm0N0cMunXpCzIqK1x2tQ2GD3K2tv_4j_b_Hvi</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Hirohata, Atsufumi</creator><creator>Yamada, Keisuke</creator><creator>Nakatani, Yoshinobu</creator><creator>Prejbeanu, Ioan-Lucian</creator><creator>Diény, Bernard</creator><creator>Pirro, Philipp</creator><creator>Hillebrands, Burkard</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0575-5301</orcidid><orcidid>https://orcid.org/0000-0001-6577-032X</orcidid></search><sort><creationdate>20200901</creationdate><title>Review on spintronics: Principles and device applications</title><author>Hirohata, Atsufumi ; Yamada, Keisuke ; Nakatani, Yoshinobu ; Prejbeanu, Ioan-Lucian ; Diény, Bernard ; Pirro, Philipp ; Hillebrands, Burkard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-5bf8c5c74e5d67b030505ba0d4f6f86c537472d10cb45409e1e0f123fa4c56963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dzyaloshinskii–Moriya interaction</topic><topic>Electric field</topic><topic>Electromagnetic wave</topic><topic>Electron spin</topic><topic>Hard disk drive</topic><topic>Landau-Lifshits-Gilbert equation</topic><topic>Magnetic damping</topic><topic>Magnetic random access memory</topic><topic>Magnetic sensor</topic><topic>Magnetic skyrmion</topic><topic>Magnons</topic><topic>Nanoelectronics</topic><topic>Nanotechnology devices</topic><topic>Neuromorphic</topic><topic>Physics</topic><topic>Polarization (spin alignment)</topic><topic>Power consumption</topic><topic>Racetrack memory</topic><topic>Spin Hall effects</topic><topic>Spin Nernst effect</topic><topic>Spin Seebeck effect</topic><topic>Spin-current generation</topic><topic>Spin-orbit effects</topic><topic>Spin-orbit interactions</topic><topic>Spin-transfer torque</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirohata, Atsufumi</creatorcontrib><creatorcontrib>Yamada, Keisuke</creatorcontrib><creatorcontrib>Nakatani, Yoshinobu</creatorcontrib><creatorcontrib>Prejbeanu, Ioan-Lucian</creatorcontrib><creatorcontrib>Diény, Bernard</creatorcontrib><creatorcontrib>Pirro, Philipp</creatorcontrib><creatorcontrib>Hillebrands, Burkard</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirohata, Atsufumi</au><au>Yamada, Keisuke</au><au>Nakatani, Yoshinobu</au><au>Prejbeanu, Ioan-Lucian</au><au>Diény, Bernard</au><au>Pirro, Philipp</au><au>Hillebrands, Burkard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review on spintronics: Principles and device applications</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>509</volume><spage>166711</spage><pages>166711-</pages><artnum>166711</artnum><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>[Display omitted]
•Broad overview on eight major methods for spin generation is given with their physical principles.•Corresponding device applications are discussed based on their recent development.•Future perspectives on the spintronic devices are provided at the end of this review.
Spintronics is one of the emerging fields for the next-generation nanoelectronic devices to reduce their power consumption and to increase their memory and processing capabilities. Such devices utilise the spin degree of freedom of electrons and/or holes, which can also interact with their orbital moments. In these devices, the spin polarisation is controlled either by magnetic layers used as spin-polarisers or analysers or via spin–orbit coupling. Spin waves can also be used to carry spin current. In this review, the fundamental physics of these phenomena is described first with respect to the spin generation methods as detailed in Sections 2 ~ 9. The recent development in their device applications then follows in Sections 10 and 11. Future perspectives are provided at the end.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2020.166711</doi><orcidid>https://orcid.org/0000-0002-0575-5301</orcidid><orcidid>https://orcid.org/0000-0001-6577-032X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-8853 |
ispartof | Journal of magnetism and magnetic materials, 2020-09, Vol.509, p.166711, Article 166711 |
issn | 0304-8853 1873-4766 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03192774v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Dzyaloshinskii–Moriya interaction Electric field Electromagnetic wave Electron spin Hard disk drive Landau-Lifshits-Gilbert equation Magnetic damping Magnetic random access memory Magnetic sensor Magnetic skyrmion Magnons Nanoelectronics Nanotechnology devices Neuromorphic Physics Polarization (spin alignment) Power consumption Racetrack memory Spin Hall effects Spin Nernst effect Spin Seebeck effect Spin-current generation Spin-orbit effects Spin-orbit interactions Spin-transfer torque Spintronics |
title | Review on spintronics: Principles and device applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20on%20spintronics:%20Principles%20and%20device%20applications&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Hirohata,%20Atsufumi&rft.date=2020-09-01&rft.volume=509&rft.spage=166711&rft.pages=166711-&rft.artnum=166711&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2020.166711&rft_dat=%3Cproquest_hal_p%3E2442964293%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442964293&rft_id=info:pmid/&rft_els_id=S0304885320302353&rfr_iscdi=true |