Review on spintronics: Principles and device applications

[Display omitted] •Broad overview on eight major methods for spin generation is given with their physical principles.•Corresponding device applications are discussed based on their recent development.•Future perspectives on the spintronic devices are provided at the end of this review. Spintronics i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2020-09, Vol.509, p.166711, Article 166711
Hauptverfasser: Hirohata, Atsufumi, Yamada, Keisuke, Nakatani, Yoshinobu, Prejbeanu, Ioan-Lucian, Diény, Bernard, Pirro, Philipp, Hillebrands, Burkard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 166711
container_title Journal of magnetism and magnetic materials
container_volume 509
creator Hirohata, Atsufumi
Yamada, Keisuke
Nakatani, Yoshinobu
Prejbeanu, Ioan-Lucian
Diény, Bernard
Pirro, Philipp
Hillebrands, Burkard
description [Display omitted] •Broad overview on eight major methods for spin generation is given with their physical principles.•Corresponding device applications are discussed based on their recent development.•Future perspectives on the spintronic devices are provided at the end of this review. Spintronics is one of the emerging fields for the next-generation nanoelectronic devices to reduce their power consumption and to increase their memory and processing capabilities. Such devices utilise the spin degree of freedom of electrons and/or holes, which can also interact with their orbital moments. In these devices, the spin polarisation is controlled either by magnetic layers used as spin-polarisers or analysers or via spin–orbit coupling. Spin waves can also be used to carry spin current. In this review, the fundamental physics of these phenomena is described first with respect to the spin generation methods as detailed in Sections 2 ~ 9. The recent development in their device applications then follows in Sections 10 and 11. Future perspectives are provided at the end.
doi_str_mv 10.1016/j.jmmm.2020.166711
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03192774v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885320302353</els_id><sourcerecordid>2442964293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-5bf8c5c74e5d67b030505ba0d4f6f86c537472d10cb45409e1e0f123fa4c56963</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8FTx665juteFkWdYUFRfQc0jTFlDapSXfFf29KxaOHYWB43mHmAeASwRWCiN-0q7bv-xWGOA04FwgdgQUqBMmp4PwYLCCBNC8KRk7BWYwthBDRgi9A-WoO1nxl3mVxsG4M3lkdb7OXYJ22Q2diplyd1YnSJlPD0FmtRutdPAcnjeqiufjtS_D-cP-22ea758enzXqXawr5mLOqKTTTghpWc1GlOxhklYI1bXhTcM2IoALXCOqKMgpLgwxsECaNoprxkpMluJ73fqhODsH2KnxLr6zcrndymkGCSiwEPaDEXs3sEPzn3sRRtn4fXDpPYkpxyVORROGZ0sHHGEzztxZBOemUrZx0ykmnnHWm0N0cMunXpCzIqK1x2tQ2GD3K2tv_4j_b_Hvi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442964293</pqid></control><display><type>article</type><title>Review on spintronics: Principles and device applications</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hirohata, Atsufumi ; Yamada, Keisuke ; Nakatani, Yoshinobu ; Prejbeanu, Ioan-Lucian ; Diény, Bernard ; Pirro, Philipp ; Hillebrands, Burkard</creator><creatorcontrib>Hirohata, Atsufumi ; Yamada, Keisuke ; Nakatani, Yoshinobu ; Prejbeanu, Ioan-Lucian ; Diény, Bernard ; Pirro, Philipp ; Hillebrands, Burkard</creatorcontrib><description>[Display omitted] •Broad overview on eight major methods for spin generation is given with their physical principles.•Corresponding device applications are discussed based on their recent development.•Future perspectives on the spintronic devices are provided at the end of this review. Spintronics is one of the emerging fields for the next-generation nanoelectronic devices to reduce their power consumption and to increase their memory and processing capabilities. Such devices utilise the spin degree of freedom of electrons and/or holes, which can also interact with their orbital moments. In these devices, the spin polarisation is controlled either by magnetic layers used as spin-polarisers or analysers or via spin–orbit coupling. Spin waves can also be used to carry spin current. In this review, the fundamental physics of these phenomena is described first with respect to the spin generation methods as detailed in Sections 2 ~ 9. The recent development in their device applications then follows in Sections 10 and 11. Future perspectives are provided at the end.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2020.166711</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Dzyaloshinskii–Moriya interaction ; Electric field ; Electromagnetic wave ; Electron spin ; Hard disk drive ; Landau-Lifshits-Gilbert equation ; Magnetic damping ; Magnetic random access memory ; Magnetic sensor ; Magnetic skyrmion ; Magnons ; Nanoelectronics ; Nanotechnology devices ; Neuromorphic ; Physics ; Polarization (spin alignment) ; Power consumption ; Racetrack memory ; Spin Hall effects ; Spin Nernst effect ; Spin Seebeck effect ; Spin-current generation ; Spin-orbit effects ; Spin-orbit interactions ; Spin-transfer torque ; Spintronics</subject><ispartof>Journal of magnetism and magnetic materials, 2020-09, Vol.509, p.166711, Article 166711</ispartof><rights>2020 The Authors</rights><rights>Copyright Elsevier BV Sep 1, 2020</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-5bf8c5c74e5d67b030505ba0d4f6f86c537472d10cb45409e1e0f123fa4c56963</citedby><cites>FETCH-LOGICAL-c406t-5bf8c5c74e5d67b030505ba0d4f6f86c537472d10cb45409e1e0f123fa4c56963</cites><orcidid>0000-0002-0575-5301 ; 0000-0001-6577-032X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmmm.2020.166711$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03192774$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirohata, Atsufumi</creatorcontrib><creatorcontrib>Yamada, Keisuke</creatorcontrib><creatorcontrib>Nakatani, Yoshinobu</creatorcontrib><creatorcontrib>Prejbeanu, Ioan-Lucian</creatorcontrib><creatorcontrib>Diény, Bernard</creatorcontrib><creatorcontrib>Pirro, Philipp</creatorcontrib><creatorcontrib>Hillebrands, Burkard</creatorcontrib><title>Review on spintronics: Principles and device applications</title><title>Journal of magnetism and magnetic materials</title><description>[Display omitted] •Broad overview on eight major methods for spin generation is given with their physical principles.•Corresponding device applications are discussed based on their recent development.•Future perspectives on the spintronic devices are provided at the end of this review. Spintronics is one of the emerging fields for the next-generation nanoelectronic devices to reduce their power consumption and to increase their memory and processing capabilities. Such devices utilise the spin degree of freedom of electrons and/or holes, which can also interact with their orbital moments. In these devices, the spin polarisation is controlled either by magnetic layers used as spin-polarisers or analysers or via spin–orbit coupling. Spin waves can also be used to carry spin current. In this review, the fundamental physics of these phenomena is described first with respect to the spin generation methods as detailed in Sections 2 ~ 9. The recent development in their device applications then follows in Sections 10 and 11. Future perspectives are provided at the end.</description><subject>Dzyaloshinskii–Moriya interaction</subject><subject>Electric field</subject><subject>Electromagnetic wave</subject><subject>Electron spin</subject><subject>Hard disk drive</subject><subject>Landau-Lifshits-Gilbert equation</subject><subject>Magnetic damping</subject><subject>Magnetic random access memory</subject><subject>Magnetic sensor</subject><subject>Magnetic skyrmion</subject><subject>Magnons</subject><subject>Nanoelectronics</subject><subject>Nanotechnology devices</subject><subject>Neuromorphic</subject><subject>Physics</subject><subject>Polarization (spin alignment)</subject><subject>Power consumption</subject><subject>Racetrack memory</subject><subject>Spin Hall effects</subject><subject>Spin Nernst effect</subject><subject>Spin Seebeck effect</subject><subject>Spin-current generation</subject><subject>Spin-orbit effects</subject><subject>Spin-orbit interactions</subject><subject>Spin-transfer torque</subject><subject>Spintronics</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8FTx665juteFkWdYUFRfQc0jTFlDapSXfFf29KxaOHYWB43mHmAeASwRWCiN-0q7bv-xWGOA04FwgdgQUqBMmp4PwYLCCBNC8KRk7BWYwthBDRgi9A-WoO1nxl3mVxsG4M3lkdb7OXYJ22Q2diplyd1YnSJlPD0FmtRutdPAcnjeqiufjtS_D-cP-22ea758enzXqXawr5mLOqKTTTghpWc1GlOxhklYI1bXhTcM2IoALXCOqKMgpLgwxsECaNoprxkpMluJ73fqhODsH2KnxLr6zcrndymkGCSiwEPaDEXs3sEPzn3sRRtn4fXDpPYkpxyVORROGZ0sHHGEzztxZBOemUrZx0ykmnnHWm0N0cMunXpCzIqK1x2tQ2GD3K2tv_4j_b_Hvi</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Hirohata, Atsufumi</creator><creator>Yamada, Keisuke</creator><creator>Nakatani, Yoshinobu</creator><creator>Prejbeanu, Ioan-Lucian</creator><creator>Diény, Bernard</creator><creator>Pirro, Philipp</creator><creator>Hillebrands, Burkard</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0575-5301</orcidid><orcidid>https://orcid.org/0000-0001-6577-032X</orcidid></search><sort><creationdate>20200901</creationdate><title>Review on spintronics: Principles and device applications</title><author>Hirohata, Atsufumi ; Yamada, Keisuke ; Nakatani, Yoshinobu ; Prejbeanu, Ioan-Lucian ; Diény, Bernard ; Pirro, Philipp ; Hillebrands, Burkard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-5bf8c5c74e5d67b030505ba0d4f6f86c537472d10cb45409e1e0f123fa4c56963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dzyaloshinskii–Moriya interaction</topic><topic>Electric field</topic><topic>Electromagnetic wave</topic><topic>Electron spin</topic><topic>Hard disk drive</topic><topic>Landau-Lifshits-Gilbert equation</topic><topic>Magnetic damping</topic><topic>Magnetic random access memory</topic><topic>Magnetic sensor</topic><topic>Magnetic skyrmion</topic><topic>Magnons</topic><topic>Nanoelectronics</topic><topic>Nanotechnology devices</topic><topic>Neuromorphic</topic><topic>Physics</topic><topic>Polarization (spin alignment)</topic><topic>Power consumption</topic><topic>Racetrack memory</topic><topic>Spin Hall effects</topic><topic>Spin Nernst effect</topic><topic>Spin Seebeck effect</topic><topic>Spin-current generation</topic><topic>Spin-orbit effects</topic><topic>Spin-orbit interactions</topic><topic>Spin-transfer torque</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirohata, Atsufumi</creatorcontrib><creatorcontrib>Yamada, Keisuke</creatorcontrib><creatorcontrib>Nakatani, Yoshinobu</creatorcontrib><creatorcontrib>Prejbeanu, Ioan-Lucian</creatorcontrib><creatorcontrib>Diény, Bernard</creatorcontrib><creatorcontrib>Pirro, Philipp</creatorcontrib><creatorcontrib>Hillebrands, Burkard</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirohata, Atsufumi</au><au>Yamada, Keisuke</au><au>Nakatani, Yoshinobu</au><au>Prejbeanu, Ioan-Lucian</au><au>Diény, Bernard</au><au>Pirro, Philipp</au><au>Hillebrands, Burkard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review on spintronics: Principles and device applications</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>509</volume><spage>166711</spage><pages>166711-</pages><artnum>166711</artnum><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>[Display omitted] •Broad overview on eight major methods for spin generation is given with their physical principles.•Corresponding device applications are discussed based on their recent development.•Future perspectives on the spintronic devices are provided at the end of this review. Spintronics is one of the emerging fields for the next-generation nanoelectronic devices to reduce their power consumption and to increase their memory and processing capabilities. Such devices utilise the spin degree of freedom of electrons and/or holes, which can also interact with their orbital moments. In these devices, the spin polarisation is controlled either by magnetic layers used as spin-polarisers or analysers or via spin–orbit coupling. Spin waves can also be used to carry spin current. In this review, the fundamental physics of these phenomena is described first with respect to the spin generation methods as detailed in Sections 2 ~ 9. The recent development in their device applications then follows in Sections 10 and 11. Future perspectives are provided at the end.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2020.166711</doi><orcidid>https://orcid.org/0000-0002-0575-5301</orcidid><orcidid>https://orcid.org/0000-0001-6577-032X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2020-09, Vol.509, p.166711, Article 166711
issn 0304-8853
1873-4766
language eng
recordid cdi_hal_primary_oai_HAL_hal_03192774v1
source Access via ScienceDirect (Elsevier)
subjects Dzyaloshinskii–Moriya interaction
Electric field
Electromagnetic wave
Electron spin
Hard disk drive
Landau-Lifshits-Gilbert equation
Magnetic damping
Magnetic random access memory
Magnetic sensor
Magnetic skyrmion
Magnons
Nanoelectronics
Nanotechnology devices
Neuromorphic
Physics
Polarization (spin alignment)
Power consumption
Racetrack memory
Spin Hall effects
Spin Nernst effect
Spin Seebeck effect
Spin-current generation
Spin-orbit effects
Spin-orbit interactions
Spin-transfer torque
Spintronics
title Review on spintronics: Principles and device applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20on%20spintronics:%20Principles%20and%20device%20applications&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Hirohata,%20Atsufumi&rft.date=2020-09-01&rft.volume=509&rft.spage=166711&rft.pages=166711-&rft.artnum=166711&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2020.166711&rft_dat=%3Cproquest_hal_p%3E2442964293%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442964293&rft_id=info:pmid/&rft_els_id=S0304885320302353&rfr_iscdi=true