Foaming parameter identification of polyurethane using FOAMAT® device
A key problem in the modeling of polyurethane (PU) foaming is the determination of relevant physical parameters for the viscosity, the gas expansion, and the curing rate. Indeed, it is difficult to measure the chemical kinetics parameters as well as the viscosity of industrial PU formulations (polyo...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2021-04, Vol.61 (4), p.1243-1256 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1256 |
---|---|
container_issue | 4 |
container_start_page | 1243 |
container_title | Polymer engineering and science |
container_volume | 61 |
creator | Raimbault, Clément Laure, Patrice François, Guillaume Boyer, Séverine Vincent, Michel Choquart, François Agassant, Jean‐Francois |
description | A key problem in the modeling of polyurethane (PU) foaming is the determination of relevant physical parameters for the viscosity, the gas expansion, and the curing rate. Indeed, it is difficult to measure the chemical kinetics parameters as well as the viscosity of industrial PU formulations (polyol–isocyanate–water mixture) because the time scales of gas production and PU crosslinking are very short and hardly compatible with the installation of the sample in characterization devices such as differential scanning calorimetry and parallel plates rheometer. A FOAMAT® system has been developed to get these experimental data but the relationship between measurements and the rheo‐chemical parameters has not been clearly established. In this paper, an analytical model of the foaming process is developed in the cylindrical FOAMAT geometry, which allows identifying the parameters of the curing and gas production kinetics equations, as well as the viscosity. This analytical model is based on a set of simplifying hypotheses which validity is checked using the finite element computation software REM3D dedicated to foaming modeling and applicable for injection‐molding processing. |
doi_str_mv | 10.1002/pen.25676 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03185236v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A662343601</galeid><sourcerecordid>A662343601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6106-1b02e3542a9688d67c2ffa9d3497cbafd9cc873d50c8c1e13db15371f25fa2f03</originalsourceid><addsrcrecordid>eNp10t1q2zAUB3AzVljW7mJvYBgMCnWqD1u2L01p2kK2lq27Fop85KjYkifZ3fJSfYg92eR5bA2kCCQQv_9BHyeK3mO0xAiR8x7MkmQsZ6-iBc7SIiGMpq-jBUKUJLQoijfRW-8fULA0KxfRamVFp00T98KJDgZwsa7BDFppKQZtTWxV3Nt2NzoYtsJAPPqJr26rT9X9r6e4hkct4SQ6UqL18O7vehx9W13eX1wn69urm4tqnUiGEUvwBhGgWUpEyYqiZrkkSomypmmZy41QdSllkdM6Q7KQGDCtNzijOVYkU4IoRI-j07nuVrS8d7oTbset0Py6WvNpD1FcZISyRxzsh9n2zn4fwQ_8wY7OhONxkqEyJzjF6X_ViBa4NsoOTshOe8krxghNKUNTreSAasCAE601oHTY3vPLAz6MGjotDwY-7gWCGeDn0IjRe74PT1-GN1-_7NuzZ3Yz_Rz4MHndbAc_Rw6Vls5670D9e2GM-NRdPHQX_9NdwZ7P9ke4yO5lyO8uP8-J31Vgy7s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509721414</pqid></control><display><type>article</type><title>Foaming parameter identification of polyurethane using FOAMAT® device</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Raimbault, Clément ; Laure, Patrice ; François, Guillaume ; Boyer, Séverine ; Vincent, Michel ; Choquart, François ; Agassant, Jean‐Francois</creator><creatorcontrib>Raimbault, Clément ; Laure, Patrice ; François, Guillaume ; Boyer, Séverine ; Vincent, Michel ; Choquart, François ; Agassant, Jean‐Francois</creatorcontrib><description>A key problem in the modeling of polyurethane (PU) foaming is the determination of relevant physical parameters for the viscosity, the gas expansion, and the curing rate. Indeed, it is difficult to measure the chemical kinetics parameters as well as the viscosity of industrial PU formulations (polyol–isocyanate–water mixture) because the time scales of gas production and PU crosslinking are very short and hardly compatible with the installation of the sample in characterization devices such as differential scanning calorimetry and parallel plates rheometer. A FOAMAT® system has been developed to get these experimental data but the relationship between measurements and the rheo‐chemical parameters has not been clearly established. In this paper, an analytical model of the foaming process is developed in the cylindrical FOAMAT geometry, which allows identifying the parameters of the curing and gas production kinetics equations, as well as the viscosity. This analytical model is based on a set of simplifying hypotheses which validity is checked using the finite element computation software REM3D dedicated to foaming modeling and applicable for injection‐molding processing.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25676</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Chemical and Process Engineering ; Chemical properties ; Chemical reaction, Rate of ; Chemical Sciences ; Crosslinking ; Curing ; Engineering Sciences ; Fluid mechanics ; foam ; FOAMAT experiments ; Foaming ; foaming and curing kinetics ; Formulations ; Gas expansion ; Isocyanates ; Mathematical models ; Mechanics ; modeling ; Molding (process) ; Parallel plates ; Parameter identification ; Physical properties ; Physics ; Plastic foams ; Polymers ; polyurethane ; Polyurethane resins ; Polyurethanes ; Reaction kinetics ; rheology ; Viscosity</subject><ispartof>Polymer engineering and science, 2021-04, Vol.61 (4), p.1243-1256</ispartof><rights>2021 Society of Plastics Engineers.</rights><rights>COPYRIGHT 2021 Society of Plastics Engineers, Inc.</rights><rights>2021 Society of Plastics Engineers</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6106-1b02e3542a9688d67c2ffa9d3497cbafd9cc873d50c8c1e13db15371f25fa2f03</citedby><cites>FETCH-LOGICAL-c6106-1b02e3542a9688d67c2ffa9d3497cbafd9cc873d50c8c1e13db15371f25fa2f03</cites><orcidid>0000-0001-7358-2011 ; 0000-0002-3271-3465 ; 0000-0002-7025-4343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.25676$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.25676$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03185236$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Raimbault, Clément</creatorcontrib><creatorcontrib>Laure, Patrice</creatorcontrib><creatorcontrib>François, Guillaume</creatorcontrib><creatorcontrib>Boyer, Séverine</creatorcontrib><creatorcontrib>Vincent, Michel</creatorcontrib><creatorcontrib>Choquart, François</creatorcontrib><creatorcontrib>Agassant, Jean‐Francois</creatorcontrib><title>Foaming parameter identification of polyurethane using FOAMAT® device</title><title>Polymer engineering and science</title><description>A key problem in the modeling of polyurethane (PU) foaming is the determination of relevant physical parameters for the viscosity, the gas expansion, and the curing rate. Indeed, it is difficult to measure the chemical kinetics parameters as well as the viscosity of industrial PU formulations (polyol–isocyanate–water mixture) because the time scales of gas production and PU crosslinking are very short and hardly compatible with the installation of the sample in characterization devices such as differential scanning calorimetry and parallel plates rheometer. A FOAMAT® system has been developed to get these experimental data but the relationship between measurements and the rheo‐chemical parameters has not been clearly established. In this paper, an analytical model of the foaming process is developed in the cylindrical FOAMAT geometry, which allows identifying the parameters of the curing and gas production kinetics equations, as well as the viscosity. This analytical model is based on a set of simplifying hypotheses which validity is checked using the finite element computation software REM3D dedicated to foaming modeling and applicable for injection‐molding processing.</description><subject>Chemical and Process Engineering</subject><subject>Chemical properties</subject><subject>Chemical reaction, Rate of</subject><subject>Chemical Sciences</subject><subject>Crosslinking</subject><subject>Curing</subject><subject>Engineering Sciences</subject><subject>Fluid mechanics</subject><subject>foam</subject><subject>FOAMAT experiments</subject><subject>Foaming</subject><subject>foaming and curing kinetics</subject><subject>Formulations</subject><subject>Gas expansion</subject><subject>Isocyanates</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>modeling</subject><subject>Molding (process)</subject><subject>Parallel plates</subject><subject>Parameter identification</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Plastic foams</subject><subject>Polymers</subject><subject>polyurethane</subject><subject>Polyurethane resins</subject><subject>Polyurethanes</subject><subject>Reaction kinetics</subject><subject>rheology</subject><subject>Viscosity</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp10t1q2zAUB3AzVljW7mJvYBgMCnWqD1u2L01p2kK2lq27Fop85KjYkifZ3fJSfYg92eR5bA2kCCQQv_9BHyeK3mO0xAiR8x7MkmQsZ6-iBc7SIiGMpq-jBUKUJLQoijfRW-8fULA0KxfRamVFp00T98KJDgZwsa7BDFppKQZtTWxV3Nt2NzoYtsJAPPqJr26rT9X9r6e4hkct4SQ6UqL18O7vehx9W13eX1wn69urm4tqnUiGEUvwBhGgWUpEyYqiZrkkSomypmmZy41QdSllkdM6Q7KQGDCtNzijOVYkU4IoRI-j07nuVrS8d7oTbset0Py6WvNpD1FcZISyRxzsh9n2zn4fwQ_8wY7OhONxkqEyJzjF6X_ViBa4NsoOTshOe8krxghNKUNTreSAasCAE601oHTY3vPLAz6MGjotDwY-7gWCGeDn0IjRe74PT1-GN1-_7NuzZ3Yz_Rz4MHndbAc_Rw6Vls5670D9e2GM-NRdPHQX_9NdwZ7P9ke4yO5lyO8uP8-J31Vgy7s</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Raimbault, Clément</creator><creator>Laure, Patrice</creator><creator>François, Guillaume</creator><creator>Boyer, Séverine</creator><creator>Vincent, Michel</creator><creator>Choquart, François</creator><creator>Agassant, Jean‐Francois</creator><general>John Wiley & Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7358-2011</orcidid><orcidid>https://orcid.org/0000-0002-3271-3465</orcidid><orcidid>https://orcid.org/0000-0002-7025-4343</orcidid></search><sort><creationdate>202104</creationdate><title>Foaming parameter identification of polyurethane using FOAMAT® device</title><author>Raimbault, Clément ; Laure, Patrice ; François, Guillaume ; Boyer, Séverine ; Vincent, Michel ; Choquart, François ; Agassant, Jean‐Francois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6106-1b02e3542a9688d67c2ffa9d3497cbafd9cc873d50c8c1e13db15371f25fa2f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical and Process Engineering</topic><topic>Chemical properties</topic><topic>Chemical reaction, Rate of</topic><topic>Chemical Sciences</topic><topic>Crosslinking</topic><topic>Curing</topic><topic>Engineering Sciences</topic><topic>Fluid mechanics</topic><topic>foam</topic><topic>FOAMAT experiments</topic><topic>Foaming</topic><topic>foaming and curing kinetics</topic><topic>Formulations</topic><topic>Gas expansion</topic><topic>Isocyanates</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>modeling</topic><topic>Molding (process)</topic><topic>Parallel plates</topic><topic>Parameter identification</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Plastic foams</topic><topic>Polymers</topic><topic>polyurethane</topic><topic>Polyurethane resins</topic><topic>Polyurethanes</topic><topic>Reaction kinetics</topic><topic>rheology</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raimbault, Clément</creatorcontrib><creatorcontrib>Laure, Patrice</creatorcontrib><creatorcontrib>François, Guillaume</creatorcontrib><creatorcontrib>Boyer, Séverine</creatorcontrib><creatorcontrib>Vincent, Michel</creatorcontrib><creatorcontrib>Choquart, François</creatorcontrib><creatorcontrib>Agassant, Jean‐Francois</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raimbault, Clément</au><au>Laure, Patrice</au><au>François, Guillaume</au><au>Boyer, Séverine</au><au>Vincent, Michel</au><au>Choquart, François</au><au>Agassant, Jean‐Francois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foaming parameter identification of polyurethane using FOAMAT® device</atitle><jtitle>Polymer engineering and science</jtitle><date>2021-04</date><risdate>2021</risdate><volume>61</volume><issue>4</issue><spage>1243</spage><epage>1256</epage><pages>1243-1256</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>A key problem in the modeling of polyurethane (PU) foaming is the determination of relevant physical parameters for the viscosity, the gas expansion, and the curing rate. Indeed, it is difficult to measure the chemical kinetics parameters as well as the viscosity of industrial PU formulations (polyol–isocyanate–water mixture) because the time scales of gas production and PU crosslinking are very short and hardly compatible with the installation of the sample in characterization devices such as differential scanning calorimetry and parallel plates rheometer. A FOAMAT® system has been developed to get these experimental data but the relationship between measurements and the rheo‐chemical parameters has not been clearly established. In this paper, an analytical model of the foaming process is developed in the cylindrical FOAMAT geometry, which allows identifying the parameters of the curing and gas production kinetics equations, as well as the viscosity. This analytical model is based on a set of simplifying hypotheses which validity is checked using the finite element computation software REM3D dedicated to foaming modeling and applicable for injection‐molding processing.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pen.25676</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7358-2011</orcidid><orcidid>https://orcid.org/0000-0002-3271-3465</orcidid><orcidid>https://orcid.org/0000-0002-7025-4343</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2021-04, Vol.61 (4), p.1243-1256 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03185236v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chemical and Process Engineering Chemical properties Chemical reaction, Rate of Chemical Sciences Crosslinking Curing Engineering Sciences Fluid mechanics foam FOAMAT experiments Foaming foaming and curing kinetics Formulations Gas expansion Isocyanates Mathematical models Mechanics modeling Molding (process) Parallel plates Parameter identification Physical properties Physics Plastic foams Polymers polyurethane Polyurethane resins Polyurethanes Reaction kinetics rheology Viscosity |
title | Foaming parameter identification of polyurethane using FOAMAT® device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foaming%20parameter%20identification%20of%20polyurethane%20using%20FOAMAT%C2%AE%20device&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Raimbault,%20Cl%C3%A9ment&rft.date=2021-04&rft.volume=61&rft.issue=4&rft.spage=1243&rft.epage=1256&rft.pages=1243-1256&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25676&rft_dat=%3Cgale_hal_p%3EA662343601%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509721414&rft_id=info:pmid/&rft_galeid=A662343601&rfr_iscdi=true |