Foaming parameter identification of polyurethane using FOAMAT® device

A key problem in the modeling of polyurethane (PU) foaming is the determination of relevant physical parameters for the viscosity, the gas expansion, and the curing rate. Indeed, it is difficult to measure the chemical kinetics parameters as well as the viscosity of industrial PU formulations (polyo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2021-04, Vol.61 (4), p.1243-1256
Hauptverfasser: Raimbault, Clément, Laure, Patrice, François, Guillaume, Boyer, Séverine, Vincent, Michel, Choquart, François, Agassant, Jean‐Francois
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1256
container_issue 4
container_start_page 1243
container_title Polymer engineering and science
container_volume 61
creator Raimbault, Clément
Laure, Patrice
François, Guillaume
Boyer, Séverine
Vincent, Michel
Choquart, François
Agassant, Jean‐Francois
description A key problem in the modeling of polyurethane (PU) foaming is the determination of relevant physical parameters for the viscosity, the gas expansion, and the curing rate. Indeed, it is difficult to measure the chemical kinetics parameters as well as the viscosity of industrial PU formulations (polyol–isocyanate–water mixture) because the time scales of gas production and PU crosslinking are very short and hardly compatible with the installation of the sample in characterization devices such as differential scanning calorimetry and parallel plates rheometer. A FOAMAT® system has been developed to get these experimental data but the relationship between measurements and the rheo‐chemical parameters has not been clearly established. In this paper, an analytical model of the foaming process is developed in the cylindrical FOAMAT geometry, which allows identifying the parameters of the curing and gas production kinetics equations, as well as the viscosity. This analytical model is based on a set of simplifying hypotheses which validity is checked using the finite element computation software REM3D dedicated to foaming modeling and applicable for injection‐molding processing.
doi_str_mv 10.1002/pen.25676
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03185236v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A662343601</galeid><sourcerecordid>A662343601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6106-1b02e3542a9688d67c2ffa9d3497cbafd9cc873d50c8c1e13db15371f25fa2f03</originalsourceid><addsrcrecordid>eNp10t1q2zAUB3AzVljW7mJvYBgMCnWqD1u2L01p2kK2lq27Fop85KjYkifZ3fJSfYg92eR5bA2kCCQQv_9BHyeK3mO0xAiR8x7MkmQsZ6-iBc7SIiGMpq-jBUKUJLQoijfRW-8fULA0KxfRamVFp00T98KJDgZwsa7BDFppKQZtTWxV3Nt2NzoYtsJAPPqJr26rT9X9r6e4hkct4SQ6UqL18O7vehx9W13eX1wn69urm4tqnUiGEUvwBhGgWUpEyYqiZrkkSomypmmZy41QdSllkdM6Q7KQGDCtNzijOVYkU4IoRI-j07nuVrS8d7oTbset0Py6WvNpD1FcZISyRxzsh9n2zn4fwQ_8wY7OhONxkqEyJzjF6X_ViBa4NsoOTshOe8krxghNKUNTreSAasCAE601oHTY3vPLAz6MGjotDwY-7gWCGeDn0IjRe74PT1-GN1-_7NuzZ3Yz_Rz4MHndbAc_Rw6Vls5670D9e2GM-NRdPHQX_9NdwZ7P9ke4yO5lyO8uP8-J31Vgy7s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509721414</pqid></control><display><type>article</type><title>Foaming parameter identification of polyurethane using FOAMAT® device</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Raimbault, Clément ; Laure, Patrice ; François, Guillaume ; Boyer, Séverine ; Vincent, Michel ; Choquart, François ; Agassant, Jean‐Francois</creator><creatorcontrib>Raimbault, Clément ; Laure, Patrice ; François, Guillaume ; Boyer, Séverine ; Vincent, Michel ; Choquart, François ; Agassant, Jean‐Francois</creatorcontrib><description>A key problem in the modeling of polyurethane (PU) foaming is the determination of relevant physical parameters for the viscosity, the gas expansion, and the curing rate. Indeed, it is difficult to measure the chemical kinetics parameters as well as the viscosity of industrial PU formulations (polyol–isocyanate–water mixture) because the time scales of gas production and PU crosslinking are very short and hardly compatible with the installation of the sample in characterization devices such as differential scanning calorimetry and parallel plates rheometer. A FOAMAT® system has been developed to get these experimental data but the relationship between measurements and the rheo‐chemical parameters has not been clearly established. In this paper, an analytical model of the foaming process is developed in the cylindrical FOAMAT geometry, which allows identifying the parameters of the curing and gas production kinetics equations, as well as the viscosity. This analytical model is based on a set of simplifying hypotheses which validity is checked using the finite element computation software REM3D dedicated to foaming modeling and applicable for injection‐molding processing.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25676</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Chemical and Process Engineering ; Chemical properties ; Chemical reaction, Rate of ; Chemical Sciences ; Crosslinking ; Curing ; Engineering Sciences ; Fluid mechanics ; foam ; FOAMAT experiments ; Foaming ; foaming and curing kinetics ; Formulations ; Gas expansion ; Isocyanates ; Mathematical models ; Mechanics ; modeling ; Molding (process) ; Parallel plates ; Parameter identification ; Physical properties ; Physics ; Plastic foams ; Polymers ; polyurethane ; Polyurethane resins ; Polyurethanes ; Reaction kinetics ; rheology ; Viscosity</subject><ispartof>Polymer engineering and science, 2021-04, Vol.61 (4), p.1243-1256</ispartof><rights>2021 Society of Plastics Engineers.</rights><rights>COPYRIGHT 2021 Society of Plastics Engineers, Inc.</rights><rights>2021 Society of Plastics Engineers</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6106-1b02e3542a9688d67c2ffa9d3497cbafd9cc873d50c8c1e13db15371f25fa2f03</citedby><cites>FETCH-LOGICAL-c6106-1b02e3542a9688d67c2ffa9d3497cbafd9cc873d50c8c1e13db15371f25fa2f03</cites><orcidid>0000-0001-7358-2011 ; 0000-0002-3271-3465 ; 0000-0002-7025-4343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.25676$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.25676$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03185236$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Raimbault, Clément</creatorcontrib><creatorcontrib>Laure, Patrice</creatorcontrib><creatorcontrib>François, Guillaume</creatorcontrib><creatorcontrib>Boyer, Séverine</creatorcontrib><creatorcontrib>Vincent, Michel</creatorcontrib><creatorcontrib>Choquart, François</creatorcontrib><creatorcontrib>Agassant, Jean‐Francois</creatorcontrib><title>Foaming parameter identification of polyurethane using FOAMAT® device</title><title>Polymer engineering and science</title><description>A key problem in the modeling of polyurethane (PU) foaming is the determination of relevant physical parameters for the viscosity, the gas expansion, and the curing rate. Indeed, it is difficult to measure the chemical kinetics parameters as well as the viscosity of industrial PU formulations (polyol–isocyanate–water mixture) because the time scales of gas production and PU crosslinking are very short and hardly compatible with the installation of the sample in characterization devices such as differential scanning calorimetry and parallel plates rheometer. A FOAMAT® system has been developed to get these experimental data but the relationship between measurements and the rheo‐chemical parameters has not been clearly established. In this paper, an analytical model of the foaming process is developed in the cylindrical FOAMAT geometry, which allows identifying the parameters of the curing and gas production kinetics equations, as well as the viscosity. This analytical model is based on a set of simplifying hypotheses which validity is checked using the finite element computation software REM3D dedicated to foaming modeling and applicable for injection‐molding processing.</description><subject>Chemical and Process Engineering</subject><subject>Chemical properties</subject><subject>Chemical reaction, Rate of</subject><subject>Chemical Sciences</subject><subject>Crosslinking</subject><subject>Curing</subject><subject>Engineering Sciences</subject><subject>Fluid mechanics</subject><subject>foam</subject><subject>FOAMAT experiments</subject><subject>Foaming</subject><subject>foaming and curing kinetics</subject><subject>Formulations</subject><subject>Gas expansion</subject><subject>Isocyanates</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>modeling</subject><subject>Molding (process)</subject><subject>Parallel plates</subject><subject>Parameter identification</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Plastic foams</subject><subject>Polymers</subject><subject>polyurethane</subject><subject>Polyurethane resins</subject><subject>Polyurethanes</subject><subject>Reaction kinetics</subject><subject>rheology</subject><subject>Viscosity</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp10t1q2zAUB3AzVljW7mJvYBgMCnWqD1u2L01p2kK2lq27Fop85KjYkifZ3fJSfYg92eR5bA2kCCQQv_9BHyeK3mO0xAiR8x7MkmQsZ6-iBc7SIiGMpq-jBUKUJLQoijfRW-8fULA0KxfRamVFp00T98KJDgZwsa7BDFppKQZtTWxV3Nt2NzoYtsJAPPqJr26rT9X9r6e4hkct4SQ6UqL18O7vehx9W13eX1wn69urm4tqnUiGEUvwBhGgWUpEyYqiZrkkSomypmmZy41QdSllkdM6Q7KQGDCtNzijOVYkU4IoRI-j07nuVrS8d7oTbset0Py6WvNpD1FcZISyRxzsh9n2zn4fwQ_8wY7OhONxkqEyJzjF6X_ViBa4NsoOTshOe8krxghNKUNTreSAasCAE601oHTY3vPLAz6MGjotDwY-7gWCGeDn0IjRe74PT1-GN1-_7NuzZ3Yz_Rz4MHndbAc_Rw6Vls5670D9e2GM-NRdPHQX_9NdwZ7P9ke4yO5lyO8uP8-J31Vgy7s</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Raimbault, Clément</creator><creator>Laure, Patrice</creator><creator>François, Guillaume</creator><creator>Boyer, Séverine</creator><creator>Vincent, Michel</creator><creator>Choquart, François</creator><creator>Agassant, Jean‐Francois</creator><general>John Wiley &amp; Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7358-2011</orcidid><orcidid>https://orcid.org/0000-0002-3271-3465</orcidid><orcidid>https://orcid.org/0000-0002-7025-4343</orcidid></search><sort><creationdate>202104</creationdate><title>Foaming parameter identification of polyurethane using FOAMAT® device</title><author>Raimbault, Clément ; Laure, Patrice ; François, Guillaume ; Boyer, Séverine ; Vincent, Michel ; Choquart, François ; Agassant, Jean‐Francois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6106-1b02e3542a9688d67c2ffa9d3497cbafd9cc873d50c8c1e13db15371f25fa2f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical and Process Engineering</topic><topic>Chemical properties</topic><topic>Chemical reaction, Rate of</topic><topic>Chemical Sciences</topic><topic>Crosslinking</topic><topic>Curing</topic><topic>Engineering Sciences</topic><topic>Fluid mechanics</topic><topic>foam</topic><topic>FOAMAT experiments</topic><topic>Foaming</topic><topic>foaming and curing kinetics</topic><topic>Formulations</topic><topic>Gas expansion</topic><topic>Isocyanates</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>modeling</topic><topic>Molding (process)</topic><topic>Parallel plates</topic><topic>Parameter identification</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Plastic foams</topic><topic>Polymers</topic><topic>polyurethane</topic><topic>Polyurethane resins</topic><topic>Polyurethanes</topic><topic>Reaction kinetics</topic><topic>rheology</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raimbault, Clément</creatorcontrib><creatorcontrib>Laure, Patrice</creatorcontrib><creatorcontrib>François, Guillaume</creatorcontrib><creatorcontrib>Boyer, Séverine</creatorcontrib><creatorcontrib>Vincent, Michel</creatorcontrib><creatorcontrib>Choquart, François</creatorcontrib><creatorcontrib>Agassant, Jean‐Francois</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raimbault, Clément</au><au>Laure, Patrice</au><au>François, Guillaume</au><au>Boyer, Séverine</au><au>Vincent, Michel</au><au>Choquart, François</au><au>Agassant, Jean‐Francois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foaming parameter identification of polyurethane using FOAMAT® device</atitle><jtitle>Polymer engineering and science</jtitle><date>2021-04</date><risdate>2021</risdate><volume>61</volume><issue>4</issue><spage>1243</spage><epage>1256</epage><pages>1243-1256</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>A key problem in the modeling of polyurethane (PU) foaming is the determination of relevant physical parameters for the viscosity, the gas expansion, and the curing rate. Indeed, it is difficult to measure the chemical kinetics parameters as well as the viscosity of industrial PU formulations (polyol–isocyanate–water mixture) because the time scales of gas production and PU crosslinking are very short and hardly compatible with the installation of the sample in characterization devices such as differential scanning calorimetry and parallel plates rheometer. A FOAMAT® system has been developed to get these experimental data but the relationship between measurements and the rheo‐chemical parameters has not been clearly established. In this paper, an analytical model of the foaming process is developed in the cylindrical FOAMAT geometry, which allows identifying the parameters of the curing and gas production kinetics equations, as well as the viscosity. This analytical model is based on a set of simplifying hypotheses which validity is checked using the finite element computation software REM3D dedicated to foaming modeling and applicable for injection‐molding processing.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pen.25676</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7358-2011</orcidid><orcidid>https://orcid.org/0000-0002-3271-3465</orcidid><orcidid>https://orcid.org/0000-0002-7025-4343</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2021-04, Vol.61 (4), p.1243-1256
issn 0032-3888
1548-2634
language eng
recordid cdi_hal_primary_oai_HAL_hal_03185236v1
source Wiley Online Library Journals Frontfile Complete
subjects Chemical and Process Engineering
Chemical properties
Chemical reaction, Rate of
Chemical Sciences
Crosslinking
Curing
Engineering Sciences
Fluid mechanics
foam
FOAMAT experiments
Foaming
foaming and curing kinetics
Formulations
Gas expansion
Isocyanates
Mathematical models
Mechanics
modeling
Molding (process)
Parallel plates
Parameter identification
Physical properties
Physics
Plastic foams
Polymers
polyurethane
Polyurethane resins
Polyurethanes
Reaction kinetics
rheology
Viscosity
title Foaming parameter identification of polyurethane using FOAMAT® device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foaming%20parameter%20identification%20of%20polyurethane%20using%20FOAMAT%C2%AE%20device&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Raimbault,%20Cl%C3%A9ment&rft.date=2021-04&rft.volume=61&rft.issue=4&rft.spage=1243&rft.epage=1256&rft.pages=1243-1256&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25676&rft_dat=%3Cgale_hal_p%3EA662343601%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509721414&rft_id=info:pmid/&rft_galeid=A662343601&rfr_iscdi=true