Enhanced fault diagnosis method using conditional Gaussian network for dynamic processes

Applying fault detection and diagnosis (FDD) technology to the process industry can help to detect faults in time and minimize their impact. The purpose of this study is to propose an enhanced fault diagnosis method under a Conditional Gaussian Network(CGN) efficient and suitable for dynamic process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering applications of artificial intelligence 2020-08, Vol.93, p.103704, Article 103704
Hauptverfasser: Lou, Chuyue, Li, Xiangshun, Atoui, M. Amine, Jiang, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103704
container_title Engineering applications of artificial intelligence
container_volume 93
creator Lou, Chuyue
Li, Xiangshun
Atoui, M. Amine
Jiang, Jin
description Applying fault detection and diagnosis (FDD) technology to the process industry can help to detect faults in time and minimize their impact. The purpose of this study is to propose an enhanced fault diagnosis method under a Conditional Gaussian Network(CGN) efficient and suitable for dynamic processes fault monitoring. The key paths are as follows: first, a time series model is established for the process data and decomposed into time-dependent components and time-independent components; second, time-dependent components are discarded and time-independent components void of auto-correlation are considered instead of the original data to learn the CGN model. A numerical simulation case is used to illustrate the interest of our proposal. The effectiveness of the proposed method is further verified and compared on the Tennessee Eastman Process (TEP). The obtained results show that our method has high and better accuracies regarding the diagnosis of known and unknown faults in dynamic processes.
doi_str_mv 10.1016/j.engappai.2020.103704
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03175818v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0952197620301317</els_id><sourcerecordid>S0952197620301317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-90a2b102b03872b2af1b633c66a5fb173b5d2885a467d813c681fc254939815d3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKtfQXL1sDV_drPZm6XUVih4UfAWZpNsm9omJdlW-u3dZdWrp4E37z1mfgjdUzKhhIrH7cT6NRwO4CaMsF7kJckv0IjKkmeiFNUlGpGqYBmtSnGNblLaEkK4zMUIfcz9Bry2Bjdw3LXYOFj7kFzCe9tugsHH5Pwa6-CNa13wsMMLOKbkwGNv268QP3ETIjZnD3un8SEGbVOy6RZdNbBL9u5njtH78_xttsxWr4uX2XSVaZ6LNqsIsJoSVnf3lKxm0NBacK6FgKKpacnrwjApC8hFaSTtFpI2mhV5xStJC8PH6GHo3cBOHaLbQzyrAE4tpyvVa4TTspBUnmjnFYNXx5BStM1fgBLVs1Rb9ctS9SzVwLILPg1B231ycjaqpJ3tsblodatMcP9VfAMhFYBs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced fault diagnosis method using conditional Gaussian network for dynamic processes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lou, Chuyue ; Li, Xiangshun ; Atoui, M. Amine ; Jiang, Jin</creator><creatorcontrib>Lou, Chuyue ; Li, Xiangshun ; Atoui, M. Amine ; Jiang, Jin</creatorcontrib><description>Applying fault detection and diagnosis (FDD) technology to the process industry can help to detect faults in time and minimize their impact. The purpose of this study is to propose an enhanced fault diagnosis method under a Conditional Gaussian Network(CGN) efficient and suitable for dynamic processes fault monitoring. The key paths are as follows: first, a time series model is established for the process data and decomposed into time-dependent components and time-independent components; second, time-dependent components are discarded and time-independent components void of auto-correlation are considered instead of the original data to learn the CGN model. A numerical simulation case is used to illustrate the interest of our proposal. The effectiveness of the proposed method is further verified and compared on the Tennessee Eastman Process (TEP). The obtained results show that our method has high and better accuracies regarding the diagnosis of known and unknown faults in dynamic processes.</description><identifier>ISSN: 0952-1976</identifier><identifier>EISSN: 1873-6769</identifier><identifier>DOI: 10.1016/j.engappai.2020.103704</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bayesian networks ; Computer Science ; Conditional Gaussian networks ; Dynamic process ; Fault diagnosis</subject><ispartof>Engineering applications of artificial intelligence, 2020-08, Vol.93, p.103704, Article 103704</ispartof><rights>2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-90a2b102b03872b2af1b633c66a5fb173b5d2885a467d813c681fc254939815d3</citedby><cites>FETCH-LOGICAL-c346t-90a2b102b03872b2af1b633c66a5fb173b5d2885a467d813c681fc254939815d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engappai.2020.103704$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-03175818$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lou, Chuyue</creatorcontrib><creatorcontrib>Li, Xiangshun</creatorcontrib><creatorcontrib>Atoui, M. Amine</creatorcontrib><creatorcontrib>Jiang, Jin</creatorcontrib><title>Enhanced fault diagnosis method using conditional Gaussian network for dynamic processes</title><title>Engineering applications of artificial intelligence</title><description>Applying fault detection and diagnosis (FDD) technology to the process industry can help to detect faults in time and minimize their impact. The purpose of this study is to propose an enhanced fault diagnosis method under a Conditional Gaussian Network(CGN) efficient and suitable for dynamic processes fault monitoring. The key paths are as follows: first, a time series model is established for the process data and decomposed into time-dependent components and time-independent components; second, time-dependent components are discarded and time-independent components void of auto-correlation are considered instead of the original data to learn the CGN model. A numerical simulation case is used to illustrate the interest of our proposal. The effectiveness of the proposed method is further verified and compared on the Tennessee Eastman Process (TEP). The obtained results show that our method has high and better accuracies regarding the diagnosis of known and unknown faults in dynamic processes.</description><subject>Bayesian networks</subject><subject>Computer Science</subject><subject>Conditional Gaussian networks</subject><subject>Dynamic process</subject><subject>Fault diagnosis</subject><issn>0952-1976</issn><issn>1873-6769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKtfQXL1sDV_drPZm6XUVih4UfAWZpNsm9omJdlW-u3dZdWrp4E37z1mfgjdUzKhhIrH7cT6NRwO4CaMsF7kJckv0IjKkmeiFNUlGpGqYBmtSnGNblLaEkK4zMUIfcz9Bry2Bjdw3LXYOFj7kFzCe9tugsHH5Pwa6-CNa13wsMMLOKbkwGNv268QP3ETIjZnD3un8SEGbVOy6RZdNbBL9u5njtH78_xttsxWr4uX2XSVaZ6LNqsIsJoSVnf3lKxm0NBacK6FgKKpacnrwjApC8hFaSTtFpI2mhV5xStJC8PH6GHo3cBOHaLbQzyrAE4tpyvVa4TTspBUnmjnFYNXx5BStM1fgBLVs1Rb9ctS9SzVwLILPg1B231ycjaqpJ3tsblodatMcP9VfAMhFYBs</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Lou, Chuyue</creator><creator>Li, Xiangshun</creator><creator>Atoui, M. Amine</creator><creator>Jiang, Jin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20200801</creationdate><title>Enhanced fault diagnosis method using conditional Gaussian network for dynamic processes</title><author>Lou, Chuyue ; Li, Xiangshun ; Atoui, M. Amine ; Jiang, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-90a2b102b03872b2af1b633c66a5fb173b5d2885a467d813c681fc254939815d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian networks</topic><topic>Computer Science</topic><topic>Conditional Gaussian networks</topic><topic>Dynamic process</topic><topic>Fault diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Chuyue</creatorcontrib><creatorcontrib>Li, Xiangshun</creatorcontrib><creatorcontrib>Atoui, M. Amine</creatorcontrib><creatorcontrib>Jiang, Jin</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Engineering applications of artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lou, Chuyue</au><au>Li, Xiangshun</au><au>Atoui, M. Amine</au><au>Jiang, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced fault diagnosis method using conditional Gaussian network for dynamic processes</atitle><jtitle>Engineering applications of artificial intelligence</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>93</volume><spage>103704</spage><pages>103704-</pages><artnum>103704</artnum><issn>0952-1976</issn><eissn>1873-6769</eissn><abstract>Applying fault detection and diagnosis (FDD) technology to the process industry can help to detect faults in time and minimize their impact. The purpose of this study is to propose an enhanced fault diagnosis method under a Conditional Gaussian Network(CGN) efficient and suitable for dynamic processes fault monitoring. The key paths are as follows: first, a time series model is established for the process data and decomposed into time-dependent components and time-independent components; second, time-dependent components are discarded and time-independent components void of auto-correlation are considered instead of the original data to learn the CGN model. A numerical simulation case is used to illustrate the interest of our proposal. The effectiveness of the proposed method is further verified and compared on the Tennessee Eastman Process (TEP). The obtained results show that our method has high and better accuracies regarding the diagnosis of known and unknown faults in dynamic processes.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engappai.2020.103704</doi></addata></record>
fulltext fulltext
identifier ISSN: 0952-1976
ispartof Engineering applications of artificial intelligence, 2020-08, Vol.93, p.103704, Article 103704
issn 0952-1976
1873-6769
language eng
recordid cdi_hal_primary_oai_HAL_hal_03175818v1
source Elsevier ScienceDirect Journals Complete
subjects Bayesian networks
Computer Science
Conditional Gaussian networks
Dynamic process
Fault diagnosis
title Enhanced fault diagnosis method using conditional Gaussian network for dynamic processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20fault%20diagnosis%20method%20using%20conditional%20Gaussian%20network%20for%20dynamic%20processes&rft.jtitle=Engineering%20applications%20of%20artificial%20intelligence&rft.au=Lou,%20Chuyue&rft.date=2020-08-01&rft.volume=93&rft.spage=103704&rft.pages=103704-&rft.artnum=103704&rft.issn=0952-1976&rft.eissn=1873-6769&rft_id=info:doi/10.1016/j.engappai.2020.103704&rft_dat=%3Celsevier_hal_p%3ES0952197620301317%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0952197620301317&rfr_iscdi=true