Adaptation to a heterogeneous patchy environment with nonlocal dispersion
In this work, we provide an asymptotic analysis of the solutions to an elliptic integro-differential equation. This equation describes the evolutionary equilibria of a phenotypically structured population, subject to selection, mutation, and both local and non-local dispersion in a spatially heterog...
Gespeichert in:
Veröffentlicht in: | Annales de l'Institut Henri Poincaré. Analyse non linéaire 2023-10, Vol.40 (5), p.1225-1266 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1266 |
---|---|
container_issue | 5 |
container_start_page | 1225 |
container_title | Annales de l'Institut Henri Poincaré. Analyse non linéaire |
container_volume | 40 |
creator | Léculier, Alexis Mirrahimi, Sepideh |
description | In this work, we provide an asymptotic analysis of the solutions to an elliptic integro-differential equation. This equation describes the evolutionary equilibria of a phenotypically structured population, subject to selection, mutation, and both local and non-local dispersion in a spatially heterogeneous, possibly patchy, environment. Considering small effects of mutations, we provide an asymptotic description of the equilibria of the phenotypic density. This asymptotic description involves a Hamilton-Jacobi equation with constraint coupled with an eigenvalue problem. Based on such analysis, we characterize some qualitative properties of the phenotypic density at equilibrium depending on the heterogeneity of the environment. In particular, we show that when the heterogeneity of the environment is low, the population concentrates around a single phenotypic trait leading to a unimodal phenotypic distribution. On the contrary, a strong fragmentation of the environment leads to multi-modal phenotypic distributions. |
doi_str_mv | 10.4171/AIHPC/59 |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03170847v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03170847v2</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_03170847v23</originalsourceid><addsrcrecordid>eNqVi70KwjAURoMoWH_AR8jqoL1po7FjKUoLDg7u5dJGG6lJSaLSt1fBF3D6DofzEbJgsOZMsDAt8lMWbpIBCdhOxCvGYxiSAKKEf5gnYzJx7gYAAjbbgBRpjZ1Hr4ym3lCkjfTSmqvU0jwc7dBXTU-lfipr9F1qT1_KN1Qb3ZoKW1or10nrPvcZGV2wdXL-2ylZHvbnLF812JadVXe0fWlQlXl6LL8OYiZgx8Uziv9p3zZpRic</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptation to a heterogeneous patchy environment with nonlocal dispersion</title><source>Electronic Journals Library</source><source>DOAJ Directory of Open Access Journals</source><creator>Léculier, Alexis ; Mirrahimi, Sepideh</creator><creatorcontrib>Léculier, Alexis ; Mirrahimi, Sepideh</creatorcontrib><description>In this work, we provide an asymptotic analysis of the solutions to an elliptic integro-differential equation. This equation describes the evolutionary equilibria of a phenotypically structured population, subject to selection, mutation, and both local and non-local dispersion in a spatially heterogeneous, possibly patchy, environment. Considering small effects of mutations, we provide an asymptotic description of the equilibria of the phenotypic density. This asymptotic description involves a Hamilton-Jacobi equation with constraint coupled with an eigenvalue problem. Based on such analysis, we characterize some qualitative properties of the phenotypic density at equilibrium depending on the heterogeneity of the environment. In particular, we show that when the heterogeneity of the environment is low, the population concentrates around a single phenotypic trait leading to a unimodal phenotypic distribution. On the contrary, a strong fragmentation of the environment leads to multi-modal phenotypic distributions.</description><identifier>ISSN: 0294-1449</identifier><identifier>EISSN: 1873-1430</identifier><identifier>DOI: 10.4171/AIHPC/59</identifier><language>eng</language><publisher>EMS</publisher><subject>Analysis of PDEs ; Mathematics</subject><ispartof>Annales de l'Institut Henri Poincaré. Analyse non linéaire, 2023-10, Vol.40 (5), p.1225-1266</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6396-6123 ; 0000-0002-6396-6123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03170847$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Léculier, Alexis</creatorcontrib><creatorcontrib>Mirrahimi, Sepideh</creatorcontrib><title>Adaptation to a heterogeneous patchy environment with nonlocal dispersion</title><title>Annales de l'Institut Henri Poincaré. Analyse non linéaire</title><description>In this work, we provide an asymptotic analysis of the solutions to an elliptic integro-differential equation. This equation describes the evolutionary equilibria of a phenotypically structured population, subject to selection, mutation, and both local and non-local dispersion in a spatially heterogeneous, possibly patchy, environment. Considering small effects of mutations, we provide an asymptotic description of the equilibria of the phenotypic density. This asymptotic description involves a Hamilton-Jacobi equation with constraint coupled with an eigenvalue problem. Based on such analysis, we characterize some qualitative properties of the phenotypic density at equilibrium depending on the heterogeneity of the environment. In particular, we show that when the heterogeneity of the environment is low, the population concentrates around a single phenotypic trait leading to a unimodal phenotypic distribution. On the contrary, a strong fragmentation of the environment leads to multi-modal phenotypic distributions.</description><subject>Analysis of PDEs</subject><subject>Mathematics</subject><issn>0294-1449</issn><issn>1873-1430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVi70KwjAURoMoWH_AR8jqoL1po7FjKUoLDg7u5dJGG6lJSaLSt1fBF3D6DofzEbJgsOZMsDAt8lMWbpIBCdhOxCvGYxiSAKKEf5gnYzJx7gYAAjbbgBRpjZ1Hr4ym3lCkjfTSmqvU0jwc7dBXTU-lfipr9F1qT1_KN1Qb3ZoKW1or10nrPvcZGV2wdXL-2ylZHvbnLF812JadVXe0fWlQlXl6LL8OYiZgx8Uziv9p3zZpRic</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Léculier, Alexis</creator><creator>Mirrahimi, Sepideh</creator><general>EMS</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6396-6123</orcidid><orcidid>https://orcid.org/0000-0002-6396-6123</orcidid></search><sort><creationdate>20231004</creationdate><title>Adaptation to a heterogeneous patchy environment with nonlocal dispersion</title><author>Léculier, Alexis ; Mirrahimi, Sepideh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_03170847v23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis of PDEs</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Léculier, Alexis</creatorcontrib><creatorcontrib>Mirrahimi, Sepideh</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Annales de l'Institut Henri Poincaré. Analyse non linéaire</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Léculier, Alexis</au><au>Mirrahimi, Sepideh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptation to a heterogeneous patchy environment with nonlocal dispersion</atitle><jtitle>Annales de l'Institut Henri Poincaré. Analyse non linéaire</jtitle><date>2023-10-04</date><risdate>2023</risdate><volume>40</volume><issue>5</issue><spage>1225</spage><epage>1266</epage><pages>1225-1266</pages><issn>0294-1449</issn><eissn>1873-1430</eissn><abstract>In this work, we provide an asymptotic analysis of the solutions to an elliptic integro-differential equation. This equation describes the evolutionary equilibria of a phenotypically structured population, subject to selection, mutation, and both local and non-local dispersion in a spatially heterogeneous, possibly patchy, environment. Considering small effects of mutations, we provide an asymptotic description of the equilibria of the phenotypic density. This asymptotic description involves a Hamilton-Jacobi equation with constraint coupled with an eigenvalue problem. Based on such analysis, we characterize some qualitative properties of the phenotypic density at equilibrium depending on the heterogeneity of the environment. In particular, we show that when the heterogeneity of the environment is low, the population concentrates around a single phenotypic trait leading to a unimodal phenotypic distribution. On the contrary, a strong fragmentation of the environment leads to multi-modal phenotypic distributions.</abstract><pub>EMS</pub><doi>10.4171/AIHPC/59</doi><orcidid>https://orcid.org/0000-0002-6396-6123</orcidid><orcidid>https://orcid.org/0000-0002-6396-6123</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0294-1449 |
ispartof | Annales de l'Institut Henri Poincaré. Analyse non linéaire, 2023-10, Vol.40 (5), p.1225-1266 |
issn | 0294-1449 1873-1430 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03170847v2 |
source | Electronic Journals Library; DOAJ Directory of Open Access Journals |
subjects | Analysis of PDEs Mathematics |
title | Adaptation to a heterogeneous patchy environment with nonlocal dispersion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptation%20to%20a%20heterogeneous%20patchy%20environment%20with%20nonlocal%20dispersion&rft.jtitle=Annales%20de%20l'Institut%20Henri%20Poincar%C3%A9.%20Analyse%20non%20lin%C3%A9aire&rft.au=L%C3%A9culier,%20Alexis&rft.date=2023-10-04&rft.volume=40&rft.issue=5&rft.spage=1225&rft.epage=1266&rft.pages=1225-1266&rft.issn=0294-1449&rft.eissn=1873-1430&rft_id=info:doi/10.4171/AIHPC/59&rft_dat=%3Chal%3Eoai_HAL_hal_03170847v2%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |