Adaptation to a heterogeneous patchy environment with nonlocal dispersion

In this work, we provide an asymptotic analysis of the solutions to an elliptic integro-differential equation. This equation describes the evolutionary equilibria of a phenotypically structured population, subject to selection, mutation, and both local and non-local dispersion in a spatially heterog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales de l'Institut Henri Poincaré. Analyse non linéaire 2023-10, Vol.40 (5), p.1225-1266
Hauptverfasser: Léculier, Alexis, Mirrahimi, Sepideh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1266
container_issue 5
container_start_page 1225
container_title Annales de l'Institut Henri Poincaré. Analyse non linéaire
container_volume 40
creator Léculier, Alexis
Mirrahimi, Sepideh
description In this work, we provide an asymptotic analysis of the solutions to an elliptic integro-differential equation. This equation describes the evolutionary equilibria of a phenotypically structured population, subject to selection, mutation, and both local and non-local dispersion in a spatially heterogeneous, possibly patchy, environment. Considering small effects of mutations, we provide an asymptotic description of the equilibria of the phenotypic density. This asymptotic description involves a Hamilton-Jacobi equation with constraint coupled with an eigenvalue problem. Based on such analysis, we characterize some qualitative properties of the phenotypic density at equilibrium depending on the heterogeneity of the environment. In particular, we show that when the heterogeneity of the environment is low, the population concentrates around a single phenotypic trait leading to a unimodal phenotypic distribution. On the contrary, a strong fragmentation of the environment leads to multi-modal phenotypic distributions.
doi_str_mv 10.4171/AIHPC/59
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03170847v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03170847v2</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_03170847v23</originalsourceid><addsrcrecordid>eNqVi70KwjAURoMoWH_AR8jqoL1po7FjKUoLDg7u5dJGG6lJSaLSt1fBF3D6DofzEbJgsOZMsDAt8lMWbpIBCdhOxCvGYxiSAKKEf5gnYzJx7gYAAjbbgBRpjZ1Hr4ym3lCkjfTSmqvU0jwc7dBXTU-lfipr9F1qT1_KN1Qb3ZoKW1or10nrPvcZGV2wdXL-2ylZHvbnLF812JadVXe0fWlQlXl6LL8OYiZgx8Uziv9p3zZpRic</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptation to a heterogeneous patchy environment with nonlocal dispersion</title><source>Electronic Journals Library</source><source>DOAJ Directory of Open Access Journals</source><creator>Léculier, Alexis ; Mirrahimi, Sepideh</creator><creatorcontrib>Léculier, Alexis ; Mirrahimi, Sepideh</creatorcontrib><description>In this work, we provide an asymptotic analysis of the solutions to an elliptic integro-differential equation. This equation describes the evolutionary equilibria of a phenotypically structured population, subject to selection, mutation, and both local and non-local dispersion in a spatially heterogeneous, possibly patchy, environment. Considering small effects of mutations, we provide an asymptotic description of the equilibria of the phenotypic density. This asymptotic description involves a Hamilton-Jacobi equation with constraint coupled with an eigenvalue problem. Based on such analysis, we characterize some qualitative properties of the phenotypic density at equilibrium depending on the heterogeneity of the environment. In particular, we show that when the heterogeneity of the environment is low, the population concentrates around a single phenotypic trait leading to a unimodal phenotypic distribution. On the contrary, a strong fragmentation of the environment leads to multi-modal phenotypic distributions.</description><identifier>ISSN: 0294-1449</identifier><identifier>EISSN: 1873-1430</identifier><identifier>DOI: 10.4171/AIHPC/59</identifier><language>eng</language><publisher>EMS</publisher><subject>Analysis of PDEs ; Mathematics</subject><ispartof>Annales de l'Institut Henri Poincaré. Analyse non linéaire, 2023-10, Vol.40 (5), p.1225-1266</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6396-6123 ; 0000-0002-6396-6123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03170847$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Léculier, Alexis</creatorcontrib><creatorcontrib>Mirrahimi, Sepideh</creatorcontrib><title>Adaptation to a heterogeneous patchy environment with nonlocal dispersion</title><title>Annales de l'Institut Henri Poincaré. Analyse non linéaire</title><description>In this work, we provide an asymptotic analysis of the solutions to an elliptic integro-differential equation. This equation describes the evolutionary equilibria of a phenotypically structured population, subject to selection, mutation, and both local and non-local dispersion in a spatially heterogeneous, possibly patchy, environment. Considering small effects of mutations, we provide an asymptotic description of the equilibria of the phenotypic density. This asymptotic description involves a Hamilton-Jacobi equation with constraint coupled with an eigenvalue problem. Based on such analysis, we characterize some qualitative properties of the phenotypic density at equilibrium depending on the heterogeneity of the environment. In particular, we show that when the heterogeneity of the environment is low, the population concentrates around a single phenotypic trait leading to a unimodal phenotypic distribution. On the contrary, a strong fragmentation of the environment leads to multi-modal phenotypic distributions.</description><subject>Analysis of PDEs</subject><subject>Mathematics</subject><issn>0294-1449</issn><issn>1873-1430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVi70KwjAURoMoWH_AR8jqoL1po7FjKUoLDg7u5dJGG6lJSaLSt1fBF3D6DofzEbJgsOZMsDAt8lMWbpIBCdhOxCvGYxiSAKKEf5gnYzJx7gYAAjbbgBRpjZ1Hr4ym3lCkjfTSmqvU0jwc7dBXTU-lfipr9F1qT1_KN1Qb3ZoKW1or10nrPvcZGV2wdXL-2ylZHvbnLF812JadVXe0fWlQlXl6LL8OYiZgx8Uziv9p3zZpRic</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Léculier, Alexis</creator><creator>Mirrahimi, Sepideh</creator><general>EMS</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6396-6123</orcidid><orcidid>https://orcid.org/0000-0002-6396-6123</orcidid></search><sort><creationdate>20231004</creationdate><title>Adaptation to a heterogeneous patchy environment with nonlocal dispersion</title><author>Léculier, Alexis ; Mirrahimi, Sepideh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_03170847v23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis of PDEs</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Léculier, Alexis</creatorcontrib><creatorcontrib>Mirrahimi, Sepideh</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Annales de l'Institut Henri Poincaré. Analyse non linéaire</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Léculier, Alexis</au><au>Mirrahimi, Sepideh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptation to a heterogeneous patchy environment with nonlocal dispersion</atitle><jtitle>Annales de l'Institut Henri Poincaré. Analyse non linéaire</jtitle><date>2023-10-04</date><risdate>2023</risdate><volume>40</volume><issue>5</issue><spage>1225</spage><epage>1266</epage><pages>1225-1266</pages><issn>0294-1449</issn><eissn>1873-1430</eissn><abstract>In this work, we provide an asymptotic analysis of the solutions to an elliptic integro-differential equation. This equation describes the evolutionary equilibria of a phenotypically structured population, subject to selection, mutation, and both local and non-local dispersion in a spatially heterogeneous, possibly patchy, environment. Considering small effects of mutations, we provide an asymptotic description of the equilibria of the phenotypic density. This asymptotic description involves a Hamilton-Jacobi equation with constraint coupled with an eigenvalue problem. Based on such analysis, we characterize some qualitative properties of the phenotypic density at equilibrium depending on the heterogeneity of the environment. In particular, we show that when the heterogeneity of the environment is low, the population concentrates around a single phenotypic trait leading to a unimodal phenotypic distribution. On the contrary, a strong fragmentation of the environment leads to multi-modal phenotypic distributions.</abstract><pub>EMS</pub><doi>10.4171/AIHPC/59</doi><orcidid>https://orcid.org/0000-0002-6396-6123</orcidid><orcidid>https://orcid.org/0000-0002-6396-6123</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0294-1449
ispartof Annales de l'Institut Henri Poincaré. Analyse non linéaire, 2023-10, Vol.40 (5), p.1225-1266
issn 0294-1449
1873-1430
language eng
recordid cdi_hal_primary_oai_HAL_hal_03170847v2
source Electronic Journals Library; DOAJ Directory of Open Access Journals
subjects Analysis of PDEs
Mathematics
title Adaptation to a heterogeneous patchy environment with nonlocal dispersion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptation%20to%20a%20heterogeneous%20patchy%20environment%20with%20nonlocal%20dispersion&rft.jtitle=Annales%20de%20l'Institut%20Henri%20Poincar%C3%A9.%20Analyse%20non%20lin%C3%A9aire&rft.au=L%C3%A9culier,%20Alexis&rft.date=2023-10-04&rft.volume=40&rft.issue=5&rft.spage=1225&rft.epage=1266&rft.pages=1225-1266&rft.issn=0294-1449&rft.eissn=1873-1430&rft_id=info:doi/10.4171/AIHPC/59&rft_dat=%3Chal%3Eoai_HAL_hal_03170847v2%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true