Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil
The effect of nonsinusoidal trajectory on the propulsive performances and the vortex shedding process behind a flapping airfoil is investigated in this study. A movement of a rigid NACA0012 airfoil undergoing a combined heaving and pitching motions at low Reynolds number (Re = 11,000) is considered....
Gespeichert in:
Veröffentlicht in: | Journal of fluids engineering 2019-04, Vol.141 (4) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Journal of fluids engineering |
container_volume | 141 |
creator | Boudis, A Bayeul-Lainé, A. C Benzaoui, A Oualli, H Guerri, O Coutier-Delgosha, O |
description | The effect of nonsinusoidal trajectory on the propulsive performances and the vortex shedding process behind a flapping airfoil is investigated in this study. A movement of a rigid NACA0012 airfoil undergoing a combined heaving and pitching motions at low Reynolds number (Re = 11,000) is considered. An elliptic function with an adjustable parameter S (flattening parameter) is used to realize various nonsinusoidal trajectories of both motions. The two-dimensional (2D) unsteady and incompressible Navier–Stokes equation governing the flow over the flapping airfoil are resolved using the commercial software starccm+. It is shown that the nonsinusoidal flapping motion has a major effect on the propulsive performances of the flapping airfoil. Although the maximum propulsive efficiency is always achievable with sinusoidal trajectories, nonsinusoidal trajectories are found to considerably improve performance: a 110% increase of the thrust force was obtained in the best studied case. This improvement is mainly related to the modification of the heaving motion, more specifically the increase of the heaving speed at maximum pitching angle of the foil. The analysis of the flow vorticity and wake structure also enables to explain the drop of the propulsive efficiency for nonsinusoidal trajectories. |
doi_str_mv | 10.1115/1.4042175 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03169562v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03169562v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-c56b674c0fddf1a16f2a60fe8fc4725b7f503adbe3a85aacebb37074ca02b1c03</originalsourceid><addsrcrecordid>eNpFkE1rAjEQhkNpodb20HMve-1hbSbZL48iWgW1PVjoLcxmE43sbiRZBaE_vrsq7Wl4Z55nYIaQZ6ADAIjfYBDRiEEa35AexCwLhxS-b0mP0mEWMkbZPXnwfkcpcB5lPfKzOlTKGYllMK-Pyjdmg42xdWB10GxVMNFaycZ3cWVrb-qDt6Zo6aU9Y2uHuxaw7hS0qTM-nd0fSt8Nl0pusTa-OvsYTEvc7029CUbGaWvKR3KnsfTq6Vr75Gs6WY9n4eLjfT4eLULkkDWhjJM8SSNJdVFoQEg0w4RqlWkZpSzOUx1TjkWuOGYxolR5zlPaCkhZDpLyPnm97N1iKfbOVOhOwqIRs9FCdD3KIRnGCTvCPyud9d4p_ScAFd2LBYjri1v25cKir5TY2YOr2zMET1KeMv4LKTJ5LA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil</title><source>ASME Transactions Journals</source><source>Alma/SFX Local Collection</source><creator>Boudis, A ; Bayeul-Lainé, A. C ; Benzaoui, A ; Oualli, H ; Guerri, O ; Coutier-Delgosha, O</creator><creatorcontrib>Boudis, A ; Bayeul-Lainé, A. C ; Benzaoui, A ; Oualli, H ; Guerri, O ; Coutier-Delgosha, O</creatorcontrib><description>The effect of nonsinusoidal trajectory on the propulsive performances and the vortex shedding process behind a flapping airfoil is investigated in this study. A movement of a rigid NACA0012 airfoil undergoing a combined heaving and pitching motions at low Reynolds number (Re = 11,000) is considered. An elliptic function with an adjustable parameter S (flattening parameter) is used to realize various nonsinusoidal trajectories of both motions. The two-dimensional (2D) unsteady and incompressible Navier–Stokes equation governing the flow over the flapping airfoil are resolved using the commercial software starccm+. It is shown that the nonsinusoidal flapping motion has a major effect on the propulsive performances of the flapping airfoil. Although the maximum propulsive efficiency is always achievable with sinusoidal trajectories, nonsinusoidal trajectories are found to considerably improve performance: a 110% increase of the thrust force was obtained in the best studied case. This improvement is mainly related to the modification of the heaving motion, more specifically the increase of the heaving speed at maximum pitching angle of the foil. The analysis of the flow vorticity and wake structure also enables to explain the drop of the propulsive efficiency for nonsinusoidal trajectories.</description><identifier>ISSN: 0098-2202</identifier><identifier>EISSN: 1528-901X</identifier><identifier>DOI: 10.1115/1.4042175</identifier><language>eng</language><publisher>ASME</publisher><subject>Engineering Sciences ; Flows in Complex Systems ; Fluids mechanics ; Mechanics</subject><ispartof>Journal of fluids engineering, 2019-04, Vol.141 (4)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a318t-c56b674c0fddf1a16f2a60fe8fc4725b7f503adbe3a85aacebb37074ca02b1c03</citedby><cites>FETCH-LOGICAL-a318t-c56b674c0fddf1a16f2a60fe8fc4725b7f503adbe3a85aacebb37074ca02b1c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925,38520</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03169562$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boudis, A</creatorcontrib><creatorcontrib>Bayeul-Lainé, A. C</creatorcontrib><creatorcontrib>Benzaoui, A</creatorcontrib><creatorcontrib>Oualli, H</creatorcontrib><creatorcontrib>Guerri, O</creatorcontrib><creatorcontrib>Coutier-Delgosha, O</creatorcontrib><title>Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil</title><title>Journal of fluids engineering</title><addtitle>J. Fluids Eng</addtitle><description>The effect of nonsinusoidal trajectory on the propulsive performances and the vortex shedding process behind a flapping airfoil is investigated in this study. A movement of a rigid NACA0012 airfoil undergoing a combined heaving and pitching motions at low Reynolds number (Re = 11,000) is considered. An elliptic function with an adjustable parameter S (flattening parameter) is used to realize various nonsinusoidal trajectories of both motions. The two-dimensional (2D) unsteady and incompressible Navier–Stokes equation governing the flow over the flapping airfoil are resolved using the commercial software starccm+. It is shown that the nonsinusoidal flapping motion has a major effect on the propulsive performances of the flapping airfoil. Although the maximum propulsive efficiency is always achievable with sinusoidal trajectories, nonsinusoidal trajectories are found to considerably improve performance: a 110% increase of the thrust force was obtained in the best studied case. This improvement is mainly related to the modification of the heaving motion, more specifically the increase of the heaving speed at maximum pitching angle of the foil. The analysis of the flow vorticity and wake structure also enables to explain the drop of the propulsive efficiency for nonsinusoidal trajectories.</description><subject>Engineering Sciences</subject><subject>Flows in Complex Systems</subject><subject>Fluids mechanics</subject><subject>Mechanics</subject><issn>0098-2202</issn><issn>1528-901X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkE1rAjEQhkNpodb20HMve-1hbSbZL48iWgW1PVjoLcxmE43sbiRZBaE_vrsq7Wl4Z55nYIaQZ6ADAIjfYBDRiEEa35AexCwLhxS-b0mP0mEWMkbZPXnwfkcpcB5lPfKzOlTKGYllMK-Pyjdmg42xdWB10GxVMNFaycZ3cWVrb-qDt6Zo6aU9Y2uHuxaw7hS0qTM-nd0fSt8Nl0pusTa-OvsYTEvc7029CUbGaWvKR3KnsfTq6Vr75Gs6WY9n4eLjfT4eLULkkDWhjJM8SSNJdVFoQEg0w4RqlWkZpSzOUx1TjkWuOGYxolR5zlPaCkhZDpLyPnm97N1iKfbOVOhOwqIRs9FCdD3KIRnGCTvCPyud9d4p_ScAFd2LBYjri1v25cKir5TY2YOr2zMET1KeMv4LKTJ5LA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Boudis, A</creator><creator>Bayeul-Lainé, A. C</creator><creator>Benzaoui, A</creator><creator>Oualli, H</creator><creator>Guerri, O</creator><creator>Coutier-Delgosha, O</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20190401</creationdate><title>Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil</title><author>Boudis, A ; Bayeul-Lainé, A. C ; Benzaoui, A ; Oualli, H ; Guerri, O ; Coutier-Delgosha, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-c56b674c0fddf1a16f2a60fe8fc4725b7f503adbe3a85aacebb37074ca02b1c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Engineering Sciences</topic><topic>Flows in Complex Systems</topic><topic>Fluids mechanics</topic><topic>Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boudis, A</creatorcontrib><creatorcontrib>Bayeul-Lainé, A. C</creatorcontrib><creatorcontrib>Benzaoui, A</creatorcontrib><creatorcontrib>Oualli, H</creatorcontrib><creatorcontrib>Guerri, O</creatorcontrib><creatorcontrib>Coutier-Delgosha, O</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluids engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boudis, A</au><au>Bayeul-Lainé, A. C</au><au>Benzaoui, A</au><au>Oualli, H</au><au>Guerri, O</au><au>Coutier-Delgosha, O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil</atitle><jtitle>Journal of fluids engineering</jtitle><stitle>J. Fluids Eng</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>141</volume><issue>4</issue><issn>0098-2202</issn><eissn>1528-901X</eissn><abstract>The effect of nonsinusoidal trajectory on the propulsive performances and the vortex shedding process behind a flapping airfoil is investigated in this study. A movement of a rigid NACA0012 airfoil undergoing a combined heaving and pitching motions at low Reynolds number (Re = 11,000) is considered. An elliptic function with an adjustable parameter S (flattening parameter) is used to realize various nonsinusoidal trajectories of both motions. The two-dimensional (2D) unsteady and incompressible Navier–Stokes equation governing the flow over the flapping airfoil are resolved using the commercial software starccm+. It is shown that the nonsinusoidal flapping motion has a major effect on the propulsive performances of the flapping airfoil. Although the maximum propulsive efficiency is always achievable with sinusoidal trajectories, nonsinusoidal trajectories are found to considerably improve performance: a 110% increase of the thrust force was obtained in the best studied case. This improvement is mainly related to the modification of the heaving motion, more specifically the increase of the heaving speed at maximum pitching angle of the foil. The analysis of the flow vorticity and wake structure also enables to explain the drop of the propulsive efficiency for nonsinusoidal trajectories.</abstract><pub>ASME</pub><doi>10.1115/1.4042175</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-2202 |
ispartof | Journal of fluids engineering, 2019-04, Vol.141 (4) |
issn | 0098-2202 1528-901X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03169562v1 |
source | ASME Transactions Journals; Alma/SFX Local Collection |
subjects | Engineering Sciences Flows in Complex Systems Fluids mechanics Mechanics |
title | Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Investigation%20of%20the%20Effects%20of%20Nonsinusoidal%20Motion%20Trajectory%20on%20the%20Propulsion%20Mechanisms%20of%20a%20Flapping%20Airfoil&rft.jtitle=Journal%20of%20fluids%20engineering&rft.au=Boudis,%20A&rft.date=2019-04-01&rft.volume=141&rft.issue=4&rft.issn=0098-2202&rft.eissn=1528-901X&rft_id=info:doi/10.1115/1.4042175&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03169562v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |