Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil

The effect of nonsinusoidal trajectory on the propulsive performances and the vortex shedding process behind a flapping airfoil is investigated in this study. A movement of a rigid NACA0012 airfoil undergoing a combined heaving and pitching motions at low Reynolds number (Re = 11,000) is considered....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluids engineering 2019-04, Vol.141 (4)
Hauptverfasser: Boudis, A, Bayeul-Lainé, A. C, Benzaoui, A, Oualli, H, Guerri, O, Coutier-Delgosha, O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of fluids engineering
container_volume 141
creator Boudis, A
Bayeul-Lainé, A. C
Benzaoui, A
Oualli, H
Guerri, O
Coutier-Delgosha, O
description The effect of nonsinusoidal trajectory on the propulsive performances and the vortex shedding process behind a flapping airfoil is investigated in this study. A movement of a rigid NACA0012 airfoil undergoing a combined heaving and pitching motions at low Reynolds number (Re = 11,000) is considered. An elliptic function with an adjustable parameter S (flattening parameter) is used to realize various nonsinusoidal trajectories of both motions. The two-dimensional (2D) unsteady and incompressible Navier–Stokes equation governing the flow over the flapping airfoil are resolved using the commercial software starccm+. It is shown that the nonsinusoidal flapping motion has a major effect on the propulsive performances of the flapping airfoil. Although the maximum propulsive efficiency is always achievable with sinusoidal trajectories, nonsinusoidal trajectories are found to considerably improve performance: a 110% increase of the thrust force was obtained in the best studied case. This improvement is mainly related to the modification of the heaving motion, more specifically the increase of the heaving speed at maximum pitching angle of the foil. The analysis of the flow vorticity and wake structure also enables to explain the drop of the propulsive efficiency for nonsinusoidal trajectories.
doi_str_mv 10.1115/1.4042175
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03169562v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03169562v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-c56b674c0fddf1a16f2a60fe8fc4725b7f503adbe3a85aacebb37074ca02b1c03</originalsourceid><addsrcrecordid>eNpFkE1rAjEQhkNpodb20HMve-1hbSbZL48iWgW1PVjoLcxmE43sbiRZBaE_vrsq7Wl4Z55nYIaQZ6ADAIjfYBDRiEEa35AexCwLhxS-b0mP0mEWMkbZPXnwfkcpcB5lPfKzOlTKGYllMK-Pyjdmg42xdWB10GxVMNFaycZ3cWVrb-qDt6Zo6aU9Y2uHuxaw7hS0qTM-nd0fSt8Nl0pusTa-OvsYTEvc7029CUbGaWvKR3KnsfTq6Vr75Gs6WY9n4eLjfT4eLULkkDWhjJM8SSNJdVFoQEg0w4RqlWkZpSzOUx1TjkWuOGYxolR5zlPaCkhZDpLyPnm97N1iKfbOVOhOwqIRs9FCdD3KIRnGCTvCPyud9d4p_ScAFd2LBYjri1v25cKir5TY2YOr2zMET1KeMv4LKTJ5LA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil</title><source>ASME Transactions Journals</source><source>Alma/SFX Local Collection</source><creator>Boudis, A ; Bayeul-Lainé, A. C ; Benzaoui, A ; Oualli, H ; Guerri, O ; Coutier-Delgosha, O</creator><creatorcontrib>Boudis, A ; Bayeul-Lainé, A. C ; Benzaoui, A ; Oualli, H ; Guerri, O ; Coutier-Delgosha, O</creatorcontrib><description>The effect of nonsinusoidal trajectory on the propulsive performances and the vortex shedding process behind a flapping airfoil is investigated in this study. A movement of a rigid NACA0012 airfoil undergoing a combined heaving and pitching motions at low Reynolds number (Re = 11,000) is considered. An elliptic function with an adjustable parameter S (flattening parameter) is used to realize various nonsinusoidal trajectories of both motions. The two-dimensional (2D) unsteady and incompressible Navier–Stokes equation governing the flow over the flapping airfoil are resolved using the commercial software starccm+. It is shown that the nonsinusoidal flapping motion has a major effect on the propulsive performances of the flapping airfoil. Although the maximum propulsive efficiency is always achievable with sinusoidal trajectories, nonsinusoidal trajectories are found to considerably improve performance: a 110% increase of the thrust force was obtained in the best studied case. This improvement is mainly related to the modification of the heaving motion, more specifically the increase of the heaving speed at maximum pitching angle of the foil. The analysis of the flow vorticity and wake structure also enables to explain the drop of the propulsive efficiency for nonsinusoidal trajectories.</description><identifier>ISSN: 0098-2202</identifier><identifier>EISSN: 1528-901X</identifier><identifier>DOI: 10.1115/1.4042175</identifier><language>eng</language><publisher>ASME</publisher><subject>Engineering Sciences ; Flows in Complex Systems ; Fluids mechanics ; Mechanics</subject><ispartof>Journal of fluids engineering, 2019-04, Vol.141 (4)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a318t-c56b674c0fddf1a16f2a60fe8fc4725b7f503adbe3a85aacebb37074ca02b1c03</citedby><cites>FETCH-LOGICAL-a318t-c56b674c0fddf1a16f2a60fe8fc4725b7f503adbe3a85aacebb37074ca02b1c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925,38520</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03169562$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boudis, A</creatorcontrib><creatorcontrib>Bayeul-Lainé, A. C</creatorcontrib><creatorcontrib>Benzaoui, A</creatorcontrib><creatorcontrib>Oualli, H</creatorcontrib><creatorcontrib>Guerri, O</creatorcontrib><creatorcontrib>Coutier-Delgosha, O</creatorcontrib><title>Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil</title><title>Journal of fluids engineering</title><addtitle>J. Fluids Eng</addtitle><description>The effect of nonsinusoidal trajectory on the propulsive performances and the vortex shedding process behind a flapping airfoil is investigated in this study. A movement of a rigid NACA0012 airfoil undergoing a combined heaving and pitching motions at low Reynolds number (Re = 11,000) is considered. An elliptic function with an adjustable parameter S (flattening parameter) is used to realize various nonsinusoidal trajectories of both motions. The two-dimensional (2D) unsteady and incompressible Navier–Stokes equation governing the flow over the flapping airfoil are resolved using the commercial software starccm+. It is shown that the nonsinusoidal flapping motion has a major effect on the propulsive performances of the flapping airfoil. Although the maximum propulsive efficiency is always achievable with sinusoidal trajectories, nonsinusoidal trajectories are found to considerably improve performance: a 110% increase of the thrust force was obtained in the best studied case. This improvement is mainly related to the modification of the heaving motion, more specifically the increase of the heaving speed at maximum pitching angle of the foil. The analysis of the flow vorticity and wake structure also enables to explain the drop of the propulsive efficiency for nonsinusoidal trajectories.</description><subject>Engineering Sciences</subject><subject>Flows in Complex Systems</subject><subject>Fluids mechanics</subject><subject>Mechanics</subject><issn>0098-2202</issn><issn>1528-901X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkE1rAjEQhkNpodb20HMve-1hbSbZL48iWgW1PVjoLcxmE43sbiRZBaE_vrsq7Wl4Z55nYIaQZ6ADAIjfYBDRiEEa35AexCwLhxS-b0mP0mEWMkbZPXnwfkcpcB5lPfKzOlTKGYllMK-Pyjdmg42xdWB10GxVMNFaycZ3cWVrb-qDt6Zo6aU9Y2uHuxaw7hS0qTM-nd0fSt8Nl0pusTa-OvsYTEvc7029CUbGaWvKR3KnsfTq6Vr75Gs6WY9n4eLjfT4eLULkkDWhjJM8SSNJdVFoQEg0w4RqlWkZpSzOUx1TjkWuOGYxolR5zlPaCkhZDpLyPnm97N1iKfbOVOhOwqIRs9FCdD3KIRnGCTvCPyud9d4p_ScAFd2LBYjri1v25cKir5TY2YOr2zMET1KeMv4LKTJ5LA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Boudis, A</creator><creator>Bayeul-Lainé, A. C</creator><creator>Benzaoui, A</creator><creator>Oualli, H</creator><creator>Guerri, O</creator><creator>Coutier-Delgosha, O</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20190401</creationdate><title>Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil</title><author>Boudis, A ; Bayeul-Lainé, A. C ; Benzaoui, A ; Oualli, H ; Guerri, O ; Coutier-Delgosha, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-c56b674c0fddf1a16f2a60fe8fc4725b7f503adbe3a85aacebb37074ca02b1c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Engineering Sciences</topic><topic>Flows in Complex Systems</topic><topic>Fluids mechanics</topic><topic>Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boudis, A</creatorcontrib><creatorcontrib>Bayeul-Lainé, A. C</creatorcontrib><creatorcontrib>Benzaoui, A</creatorcontrib><creatorcontrib>Oualli, H</creatorcontrib><creatorcontrib>Guerri, O</creatorcontrib><creatorcontrib>Coutier-Delgosha, O</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluids engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boudis, A</au><au>Bayeul-Lainé, A. C</au><au>Benzaoui, A</au><au>Oualli, H</au><au>Guerri, O</au><au>Coutier-Delgosha, O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil</atitle><jtitle>Journal of fluids engineering</jtitle><stitle>J. Fluids Eng</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>141</volume><issue>4</issue><issn>0098-2202</issn><eissn>1528-901X</eissn><abstract>The effect of nonsinusoidal trajectory on the propulsive performances and the vortex shedding process behind a flapping airfoil is investigated in this study. A movement of a rigid NACA0012 airfoil undergoing a combined heaving and pitching motions at low Reynolds number (Re = 11,000) is considered. An elliptic function with an adjustable parameter S (flattening parameter) is used to realize various nonsinusoidal trajectories of both motions. The two-dimensional (2D) unsteady and incompressible Navier–Stokes equation governing the flow over the flapping airfoil are resolved using the commercial software starccm+. It is shown that the nonsinusoidal flapping motion has a major effect on the propulsive performances of the flapping airfoil. Although the maximum propulsive efficiency is always achievable with sinusoidal trajectories, nonsinusoidal trajectories are found to considerably improve performance: a 110% increase of the thrust force was obtained in the best studied case. This improvement is mainly related to the modification of the heaving motion, more specifically the increase of the heaving speed at maximum pitching angle of the foil. The analysis of the flow vorticity and wake structure also enables to explain the drop of the propulsive efficiency for nonsinusoidal trajectories.</abstract><pub>ASME</pub><doi>10.1115/1.4042175</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-2202
ispartof Journal of fluids engineering, 2019-04, Vol.141 (4)
issn 0098-2202
1528-901X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03169562v1
source ASME Transactions Journals; Alma/SFX Local Collection
subjects Engineering Sciences
Flows in Complex Systems
Fluids mechanics
Mechanics
title Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Investigation%20of%20the%20Effects%20of%20Nonsinusoidal%20Motion%20Trajectory%20on%20the%20Propulsion%20Mechanisms%20of%20a%20Flapping%20Airfoil&rft.jtitle=Journal%20of%20fluids%20engineering&rft.au=Boudis,%20A&rft.date=2019-04-01&rft.volume=141&rft.issue=4&rft.issn=0098-2202&rft.eissn=1528-901X&rft_id=info:doi/10.1115/1.4042175&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03169562v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true