A synergy Thompson sampling hyper‐heuristic for the feature selection problem
Summary To classify high‐dimensional data, feature selection plays a key role to eliminate irrelevant attributes and enhance the classification accuracy and efficiency. Since feature selection is an NP‐Hard problem, many heuristics and metaheuristics have been used to tackle in practice this problem...
Gespeichert in:
Veröffentlicht in: | Computational intelligence 2022-06, Vol.38 (3), p.1083-1105 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1105 |
---|---|
container_issue | 3 |
container_start_page | 1083 |
container_title | Computational intelligence |
container_volume | 38 |
creator | Lassouaoui, Mourad Boughaci, Dalila Benhamou, Belaid |
description | Summary
To classify high‐dimensional data, feature selection plays a key role to eliminate irrelevant attributes and enhance the classification accuracy and efficiency. Since feature selection is an NP‐Hard problem, many heuristics and metaheuristics have been used to tackle in practice this problem. In this article, we propose a novel approach that consists in a probabilistic selection hyper‐heuristic called the synergy Thompson sampling hyper‐heuristic. The Thompson sampling selection strategy is a probabilistic reinforcement learning mechanism to assess the behavior of the low‐level heuristics, and to predict which one will be more efficient at each point during the search process. The proposed hyper‐heuristic is combined with a 1 nearest neighbor classifier from the Weka framework. It aims to find the best subset of features that maximizes the classification accuracy rate. Experimental results show a good performance in favor of the proposed method when comparing with other existing approaches. |
doi_str_mv | 10.1111/coin.12325 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03167831v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678682803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3355-b09866bb9ba88207b1c6eaa801d9610638a65ee69b45e6772472e8d030fce59b3</originalsourceid><addsrcrecordid>eNp90M1Kw0AQB_BFFKzVi0-w4EkhdT-SzeZYitpCsZd6XnbTSZOSL3cTJTcfwWf0Sdwa8ehcBobfDMMfoWtKZtTXfdoU9YwyzqITNKGhiAMpQnKKJkSyMIgTHp2jC-cOhBDKQzlBmzl2Qw12P-Bt3lSta2rsdNWWRb3H-dCC_fr4zKG3heuKFGeNxV0OOAPd9RawgxLSrvBLrW1MCdUlOst06eDqt0_Ry-PDdrEM1pun1WK-DlLOoygwJJFCGJMYLSUjsaGpAK0lobtEUCK41CICEIkJIxBxzMKYgdwRTrIUosTwKbod7-a6VK0tKm0H1ehCLedrdZwRTkUsOX2j3t6M1v_42oPr1KHpbe3fU8wbIZkk3Ku7UaW2cc5C9neWEnUMVx3DVT_hekxH_F6UMPwj1WKzeh53vgGQSHxY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678682803</pqid></control><display><type>article</type><title>A synergy Thompson sampling hyper‐heuristic for the feature selection problem</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Lassouaoui, Mourad ; Boughaci, Dalila ; Benhamou, Belaid</creator><creatorcontrib>Lassouaoui, Mourad ; Boughaci, Dalila ; Benhamou, Belaid</creatorcontrib><description>Summary
To classify high‐dimensional data, feature selection plays a key role to eliminate irrelevant attributes and enhance the classification accuracy and efficiency. Since feature selection is an NP‐Hard problem, many heuristics and metaheuristics have been used to tackle in practice this problem. In this article, we propose a novel approach that consists in a probabilistic selection hyper‐heuristic called the synergy Thompson sampling hyper‐heuristic. The Thompson sampling selection strategy is a probabilistic reinforcement learning mechanism to assess the behavior of the low‐level heuristics, and to predict which one will be more efficient at each point during the search process. The proposed hyper‐heuristic is combined with a 1 nearest neighbor classifier from the Weka framework. It aims to find the best subset of features that maximizes the classification accuracy rate. Experimental results show a good performance in favor of the proposed method when comparing with other existing approaches.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12325</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Artificial Intelligence ; Classification ; combinatorial optimization ; Computer Science ; feature selection ; Heuristic ; Heuristic methods ; hyper‐heuristics ; Machine Learning ; Probability theory ; Sampling ; Search process ; Thompson sampling</subject><ispartof>Computational intelligence, 2022-06, Vol.38 (3), p.1083-1105</ispartof><rights>2020 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3355-b09866bb9ba88207b1c6eaa801d9610638a65ee69b45e6772472e8d030fce59b3</citedby><cites>FETCH-LOGICAL-c3355-b09866bb9ba88207b1c6eaa801d9610638a65ee69b45e6772472e8d030fce59b3</cites><orcidid>0000-0002-6805-5505 ; 0000-0001-5210-8951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12325$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12325$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03167831$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lassouaoui, Mourad</creatorcontrib><creatorcontrib>Boughaci, Dalila</creatorcontrib><creatorcontrib>Benhamou, Belaid</creatorcontrib><title>A synergy Thompson sampling hyper‐heuristic for the feature selection problem</title><title>Computational intelligence</title><description>Summary
To classify high‐dimensional data, feature selection plays a key role to eliminate irrelevant attributes and enhance the classification accuracy and efficiency. Since feature selection is an NP‐Hard problem, many heuristics and metaheuristics have been used to tackle in practice this problem. In this article, we propose a novel approach that consists in a probabilistic selection hyper‐heuristic called the synergy Thompson sampling hyper‐heuristic. The Thompson sampling selection strategy is a probabilistic reinforcement learning mechanism to assess the behavior of the low‐level heuristics, and to predict which one will be more efficient at each point during the search process. The proposed hyper‐heuristic is combined with a 1 nearest neighbor classifier from the Weka framework. It aims to find the best subset of features that maximizes the classification accuracy rate. Experimental results show a good performance in favor of the proposed method when comparing with other existing approaches.</description><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>combinatorial optimization</subject><subject>Computer Science</subject><subject>feature selection</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>hyper‐heuristics</subject><subject>Machine Learning</subject><subject>Probability theory</subject><subject>Sampling</subject><subject>Search process</subject><subject>Thompson sampling</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90M1Kw0AQB_BFFKzVi0-w4EkhdT-SzeZYitpCsZd6XnbTSZOSL3cTJTcfwWf0Sdwa8ehcBobfDMMfoWtKZtTXfdoU9YwyzqITNKGhiAMpQnKKJkSyMIgTHp2jC-cOhBDKQzlBmzl2Qw12P-Bt3lSta2rsdNWWRb3H-dCC_fr4zKG3heuKFGeNxV0OOAPd9RawgxLSrvBLrW1MCdUlOst06eDqt0_Ry-PDdrEM1pun1WK-DlLOoygwJJFCGJMYLSUjsaGpAK0lobtEUCK41CICEIkJIxBxzMKYgdwRTrIUosTwKbod7-a6VK0tKm0H1ehCLedrdZwRTkUsOX2j3t6M1v_42oPr1KHpbe3fU8wbIZkk3Ku7UaW2cc5C9neWEnUMVx3DVT_hekxH_F6UMPwj1WKzeh53vgGQSHxY</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Lassouaoui, Mourad</creator><creator>Boughaci, Dalila</creator><creator>Benhamou, Belaid</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6805-5505</orcidid><orcidid>https://orcid.org/0000-0001-5210-8951</orcidid></search><sort><creationdate>202206</creationdate><title>A synergy Thompson sampling hyper‐heuristic for the feature selection problem</title><author>Lassouaoui, Mourad ; Boughaci, Dalila ; Benhamou, Belaid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3355-b09866bb9ba88207b1c6eaa801d9610638a65ee69b45e6772472e8d030fce59b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>combinatorial optimization</topic><topic>Computer Science</topic><topic>feature selection</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>hyper‐heuristics</topic><topic>Machine Learning</topic><topic>Probability theory</topic><topic>Sampling</topic><topic>Search process</topic><topic>Thompson sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lassouaoui, Mourad</creatorcontrib><creatorcontrib>Boughaci, Dalila</creatorcontrib><creatorcontrib>Benhamou, Belaid</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lassouaoui, Mourad</au><au>Boughaci, Dalila</au><au>Benhamou, Belaid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A synergy Thompson sampling hyper‐heuristic for the feature selection problem</atitle><jtitle>Computational intelligence</jtitle><date>2022-06</date><risdate>2022</risdate><volume>38</volume><issue>3</issue><spage>1083</spage><epage>1105</epage><pages>1083-1105</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>Summary
To classify high‐dimensional data, feature selection plays a key role to eliminate irrelevant attributes and enhance the classification accuracy and efficiency. Since feature selection is an NP‐Hard problem, many heuristics and metaheuristics have been used to tackle in practice this problem. In this article, we propose a novel approach that consists in a probabilistic selection hyper‐heuristic called the synergy Thompson sampling hyper‐heuristic. The Thompson sampling selection strategy is a probabilistic reinforcement learning mechanism to assess the behavior of the low‐level heuristics, and to predict which one will be more efficient at each point during the search process. The proposed hyper‐heuristic is combined with a 1 nearest neighbor classifier from the Weka framework. It aims to find the best subset of features that maximizes the classification accuracy rate. Experimental results show a good performance in favor of the proposed method when comparing with other existing approaches.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/coin.12325</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6805-5505</orcidid><orcidid>https://orcid.org/0000-0001-5210-8951</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0824-7935 |
ispartof | Computational intelligence, 2022-06, Vol.38 (3), p.1083-1105 |
issn | 0824-7935 1467-8640 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03167831v1 |
source | EBSCOhost Business Source Complete; Access via Wiley Online Library |
subjects | Artificial Intelligence Classification combinatorial optimization Computer Science feature selection Heuristic Heuristic methods hyper‐heuristics Machine Learning Probability theory Sampling Search process Thompson sampling |
title | A synergy Thompson sampling hyper‐heuristic for the feature selection problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20synergy%20Thompson%20sampling%20hyper%E2%80%90heuristic%20for%20the%20feature%20selection%20problem&rft.jtitle=Computational%20intelligence&rft.au=Lassouaoui,%20Mourad&rft.date=2022-06&rft.volume=38&rft.issue=3&rft.spage=1083&rft.epage=1105&rft.pages=1083-1105&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12325&rft_dat=%3Cproquest_hal_p%3E2678682803%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678682803&rft_id=info:pmid/&rfr_iscdi=true |