A synergy Thompson sampling hyper‐heuristic for the feature selection problem

Summary To classify high‐dimensional data, feature selection plays a key role to eliminate irrelevant attributes and enhance the classification accuracy and efficiency. Since feature selection is an NP‐Hard problem, many heuristics and metaheuristics have been used to tackle in practice this problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence 2022-06, Vol.38 (3), p.1083-1105
Hauptverfasser: Lassouaoui, Mourad, Boughaci, Dalila, Benhamou, Belaid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1105
container_issue 3
container_start_page 1083
container_title Computational intelligence
container_volume 38
creator Lassouaoui, Mourad
Boughaci, Dalila
Benhamou, Belaid
description Summary To classify high‐dimensional data, feature selection plays a key role to eliminate irrelevant attributes and enhance the classification accuracy and efficiency. Since feature selection is an NP‐Hard problem, many heuristics and metaheuristics have been used to tackle in practice this problem. In this article, we propose a novel approach that consists in a probabilistic selection hyper‐heuristic called the synergy Thompson sampling hyper‐heuristic. The Thompson sampling selection strategy is a probabilistic reinforcement learning mechanism to assess the behavior of the low‐level heuristics, and to predict which one will be more efficient at each point during the search process. The proposed hyper‐heuristic is combined with a 1 nearest neighbor classifier from the Weka framework. It aims to find the best subset of features that maximizes the classification accuracy rate. Experimental results show a good performance in favor of the proposed method when comparing with other existing approaches.
doi_str_mv 10.1111/coin.12325
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03167831v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678682803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3355-b09866bb9ba88207b1c6eaa801d9610638a65ee69b45e6772472e8d030fce59b3</originalsourceid><addsrcrecordid>eNp90M1Kw0AQB_BFFKzVi0-w4EkhdT-SzeZYitpCsZd6XnbTSZOSL3cTJTcfwWf0Sdwa8ehcBobfDMMfoWtKZtTXfdoU9YwyzqITNKGhiAMpQnKKJkSyMIgTHp2jC-cOhBDKQzlBmzl2Qw12P-Bt3lSta2rsdNWWRb3H-dCC_fr4zKG3heuKFGeNxV0OOAPd9RawgxLSrvBLrW1MCdUlOst06eDqt0_Ry-PDdrEM1pun1WK-DlLOoygwJJFCGJMYLSUjsaGpAK0lobtEUCK41CICEIkJIxBxzMKYgdwRTrIUosTwKbod7-a6VK0tKm0H1ehCLedrdZwRTkUsOX2j3t6M1v_42oPr1KHpbe3fU8wbIZkk3Ku7UaW2cc5C9neWEnUMVx3DVT_hekxH_F6UMPwj1WKzeh53vgGQSHxY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678682803</pqid></control><display><type>article</type><title>A synergy Thompson sampling hyper‐heuristic for the feature selection problem</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Lassouaoui, Mourad ; Boughaci, Dalila ; Benhamou, Belaid</creator><creatorcontrib>Lassouaoui, Mourad ; Boughaci, Dalila ; Benhamou, Belaid</creatorcontrib><description>Summary To classify high‐dimensional data, feature selection plays a key role to eliminate irrelevant attributes and enhance the classification accuracy and efficiency. Since feature selection is an NP‐Hard problem, many heuristics and metaheuristics have been used to tackle in practice this problem. In this article, we propose a novel approach that consists in a probabilistic selection hyper‐heuristic called the synergy Thompson sampling hyper‐heuristic. The Thompson sampling selection strategy is a probabilistic reinforcement learning mechanism to assess the behavior of the low‐level heuristics, and to predict which one will be more efficient at each point during the search process. The proposed hyper‐heuristic is combined with a 1 nearest neighbor classifier from the Weka framework. It aims to find the best subset of features that maximizes the classification accuracy rate. Experimental results show a good performance in favor of the proposed method when comparing with other existing approaches.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12325</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Artificial Intelligence ; Classification ; combinatorial optimization ; Computer Science ; feature selection ; Heuristic ; Heuristic methods ; hyper‐heuristics ; Machine Learning ; Probability theory ; Sampling ; Search process ; Thompson sampling</subject><ispartof>Computational intelligence, 2022-06, Vol.38 (3), p.1083-1105</ispartof><rights>2020 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3355-b09866bb9ba88207b1c6eaa801d9610638a65ee69b45e6772472e8d030fce59b3</citedby><cites>FETCH-LOGICAL-c3355-b09866bb9ba88207b1c6eaa801d9610638a65ee69b45e6772472e8d030fce59b3</cites><orcidid>0000-0002-6805-5505 ; 0000-0001-5210-8951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12325$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12325$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03167831$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lassouaoui, Mourad</creatorcontrib><creatorcontrib>Boughaci, Dalila</creatorcontrib><creatorcontrib>Benhamou, Belaid</creatorcontrib><title>A synergy Thompson sampling hyper‐heuristic for the feature selection problem</title><title>Computational intelligence</title><description>Summary To classify high‐dimensional data, feature selection plays a key role to eliminate irrelevant attributes and enhance the classification accuracy and efficiency. Since feature selection is an NP‐Hard problem, many heuristics and metaheuristics have been used to tackle in practice this problem. In this article, we propose a novel approach that consists in a probabilistic selection hyper‐heuristic called the synergy Thompson sampling hyper‐heuristic. The Thompson sampling selection strategy is a probabilistic reinforcement learning mechanism to assess the behavior of the low‐level heuristics, and to predict which one will be more efficient at each point during the search process. The proposed hyper‐heuristic is combined with a 1 nearest neighbor classifier from the Weka framework. It aims to find the best subset of features that maximizes the classification accuracy rate. Experimental results show a good performance in favor of the proposed method when comparing with other existing approaches.</description><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>combinatorial optimization</subject><subject>Computer Science</subject><subject>feature selection</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>hyper‐heuristics</subject><subject>Machine Learning</subject><subject>Probability theory</subject><subject>Sampling</subject><subject>Search process</subject><subject>Thompson sampling</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90M1Kw0AQB_BFFKzVi0-w4EkhdT-SzeZYitpCsZd6XnbTSZOSL3cTJTcfwWf0Sdwa8ehcBobfDMMfoWtKZtTXfdoU9YwyzqITNKGhiAMpQnKKJkSyMIgTHp2jC-cOhBDKQzlBmzl2Qw12P-Bt3lSta2rsdNWWRb3H-dCC_fr4zKG3heuKFGeNxV0OOAPd9RawgxLSrvBLrW1MCdUlOst06eDqt0_Ry-PDdrEM1pun1WK-DlLOoygwJJFCGJMYLSUjsaGpAK0lobtEUCK41CICEIkJIxBxzMKYgdwRTrIUosTwKbod7-a6VK0tKm0H1ehCLedrdZwRTkUsOX2j3t6M1v_42oPr1KHpbe3fU8wbIZkk3Ku7UaW2cc5C9neWEnUMVx3DVT_hekxH_F6UMPwj1WKzeh53vgGQSHxY</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Lassouaoui, Mourad</creator><creator>Boughaci, Dalila</creator><creator>Benhamou, Belaid</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6805-5505</orcidid><orcidid>https://orcid.org/0000-0001-5210-8951</orcidid></search><sort><creationdate>202206</creationdate><title>A synergy Thompson sampling hyper‐heuristic for the feature selection problem</title><author>Lassouaoui, Mourad ; Boughaci, Dalila ; Benhamou, Belaid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3355-b09866bb9ba88207b1c6eaa801d9610638a65ee69b45e6772472e8d030fce59b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>combinatorial optimization</topic><topic>Computer Science</topic><topic>feature selection</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>hyper‐heuristics</topic><topic>Machine Learning</topic><topic>Probability theory</topic><topic>Sampling</topic><topic>Search process</topic><topic>Thompson sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lassouaoui, Mourad</creatorcontrib><creatorcontrib>Boughaci, Dalila</creatorcontrib><creatorcontrib>Benhamou, Belaid</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lassouaoui, Mourad</au><au>Boughaci, Dalila</au><au>Benhamou, Belaid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A synergy Thompson sampling hyper‐heuristic for the feature selection problem</atitle><jtitle>Computational intelligence</jtitle><date>2022-06</date><risdate>2022</risdate><volume>38</volume><issue>3</issue><spage>1083</spage><epage>1105</epage><pages>1083-1105</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>Summary To classify high‐dimensional data, feature selection plays a key role to eliminate irrelevant attributes and enhance the classification accuracy and efficiency. Since feature selection is an NP‐Hard problem, many heuristics and metaheuristics have been used to tackle in practice this problem. In this article, we propose a novel approach that consists in a probabilistic selection hyper‐heuristic called the synergy Thompson sampling hyper‐heuristic. The Thompson sampling selection strategy is a probabilistic reinforcement learning mechanism to assess the behavior of the low‐level heuristics, and to predict which one will be more efficient at each point during the search process. The proposed hyper‐heuristic is combined with a 1 nearest neighbor classifier from the Weka framework. It aims to find the best subset of features that maximizes the classification accuracy rate. Experimental results show a good performance in favor of the proposed method when comparing with other existing approaches.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/coin.12325</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6805-5505</orcidid><orcidid>https://orcid.org/0000-0001-5210-8951</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0824-7935
ispartof Computational intelligence, 2022-06, Vol.38 (3), p.1083-1105
issn 0824-7935
1467-8640
language eng
recordid cdi_hal_primary_oai_HAL_hal_03167831v1
source EBSCOhost Business Source Complete; Access via Wiley Online Library
subjects Artificial Intelligence
Classification
combinatorial optimization
Computer Science
feature selection
Heuristic
Heuristic methods
hyper‐heuristics
Machine Learning
Probability theory
Sampling
Search process
Thompson sampling
title A synergy Thompson sampling hyper‐heuristic for the feature selection problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20synergy%20Thompson%20sampling%20hyper%E2%80%90heuristic%20for%20the%20feature%20selection%20problem&rft.jtitle=Computational%20intelligence&rft.au=Lassouaoui,%20Mourad&rft.date=2022-06&rft.volume=38&rft.issue=3&rft.spage=1083&rft.epage=1105&rft.pages=1083-1105&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12325&rft_dat=%3Cproquest_hal_p%3E2678682803%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678682803&rft_id=info:pmid/&rfr_iscdi=true