Sulfophenylated Terphenylene Copolymer Membranes and Ionomers

The copolymerization of a prefunctionalized, tetrasulfonated oligophenylene monomer was investigated. The corresponding physical and electrochemical properties of the polymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. Membranes prepared from these polym...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2018-12, Vol.11 (23), p.4033-4043
Hauptverfasser: Skalski, Thomas J. G., Adamski, Michael, Britton, Benjamin, Schibli, Eric M., Peckham, Timothy J., Weissbach, Thomas, Moshisuki, Takashi, Lyonnard, Sandrine, Frisken, Barbara J., Holdcroft, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4043
container_issue 23
container_start_page 4033
container_title ChemSusChem
container_volume 11
creator Skalski, Thomas J. G.
Adamski, Michael
Britton, Benjamin
Schibli, Eric M.
Peckham, Timothy J.
Weissbach, Thomas
Moshisuki, Takashi
Lyonnard, Sandrine
Frisken, Barbara J.
Holdcroft, Steven
description The copolymerization of a prefunctionalized, tetrasulfonated oligophenylene monomer was investigated. The corresponding physical and electrochemical properties of the polymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. Membranes prepared from these polymers possessed ion exchange capacities ranging from 1.86 to 3.50 meq g−1 and exhibited proton conductivities of up to 338 mS cm−1 (80 °C, 95 % relative humidity). Small‐angle X‐ray scattering and small‐angle neutron scattering were used to elucidate the effect of the monomer ratios on the polymer morphology. The utility of these materials as low gas crossover, highly conductive membranes was demonstrated in fuel cell devices. Gas crossover currents through the membranes of as low as 4 % (0.16±0.03 mA cm−2) for a perfluorosulfonic acid reference membrane were demonstrated. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcame kinetic losses typically observed for hydrocarbon‐based catalyst layers. Fully hydrocarbon, nonfluorous, solid polymer electrolyte fuel cells are demonstrated with peak power densities of 770 mW cm−2 with oxygen and 456 mW cm−2 with air. In tune in the membrane! The physical and electrochemical properties of tetrasulfonated oligophenylene copolymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. These materials were utilized as low gas crossover, highly conductive membranes in fuel cell devices. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcome kinetic losses typically observed for hydrocarbon‐based catalyst layers.
doi_str_mv 10.1002/cssc.201801965
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03164117v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112190778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5105-c66bbf9fbc07f6fe4a30118d963027ab88141076f08b2acf32e48d03e0849bb03</originalsourceid><addsrcrecordid>eNqFkc1r3DAQxUVpaD6aa4_F0Etz2M2MJcvyoYdgkmZhQw67hdyEZI_IBtvaSnHK_vfV4nQLueQ0msdPjyc9xr4gzBEgv2xibOY5oAKsZPGBnaCSYlZI8fDxcOZ4zE5jfAKQUEn5iR1zyAvkgp-wH6uxc377SMOuM8_UZmsK00YDZbXf-m7XU8juqLfBDBQzM7TZwg8-qfEzO3Kmi3T-Os_Yr5vrdX07W97_XNRXy1lTIBSzRkprXeVsA6WTjoThgKjaSqYgpbFKoUAopQNlc9M4npNQLXACJSprgZ-xi8n30XR6Gza9CTvtzUbfXi31XgOOUiCWL5jY7xO7Df73SPFZ95vYUNel9H6MOkfMsYKyVAn99gZ98mMY0ksSVfBKFYIXiZpPVBN8jIHcIQGC3peg9yXoQwnpwtdX29H21B7wf7-egGoC_mw62r1jp-vVqv5v_hcAu5GU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2153985435</pqid></control><display><type>article</type><title>Sulfophenylated Terphenylene Copolymer Membranes and Ionomers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Skalski, Thomas J. G. ; Adamski, Michael ; Britton, Benjamin ; Schibli, Eric M. ; Peckham, Timothy J. ; Weissbach, Thomas ; Moshisuki, Takashi ; Lyonnard, Sandrine ; Frisken, Barbara J. ; Holdcroft, Steven</creator><creatorcontrib>Skalski, Thomas J. G. ; Adamski, Michael ; Britton, Benjamin ; Schibli, Eric M. ; Peckham, Timothy J. ; Weissbach, Thomas ; Moshisuki, Takashi ; Lyonnard, Sandrine ; Frisken, Barbara J. ; Holdcroft, Steven</creatorcontrib><description>The copolymerization of a prefunctionalized, tetrasulfonated oligophenylene monomer was investigated. The corresponding physical and electrochemical properties of the polymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. Membranes prepared from these polymers possessed ion exchange capacities ranging from 1.86 to 3.50 meq g−1 and exhibited proton conductivities of up to 338 mS cm−1 (80 °C, 95 % relative humidity). Small‐angle X‐ray scattering and small‐angle neutron scattering were used to elucidate the effect of the monomer ratios on the polymer morphology. The utility of these materials as low gas crossover, highly conductive membranes was demonstrated in fuel cell devices. Gas crossover currents through the membranes of as low as 4 % (0.16±0.03 mA cm−2) for a perfluorosulfonic acid reference membrane were demonstrated. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcame kinetic losses typically observed for hydrocarbon‐based catalyst layers. Fully hydrocarbon, nonfluorous, solid polymer electrolyte fuel cells are demonstrated with peak power densities of 770 mW cm−2 with oxygen and 456 mW cm−2 with air. In tune in the membrane! The physical and electrochemical properties of tetrasulfonated oligophenylene copolymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. These materials were utilized as low gas crossover, highly conductive membranes in fuel cell devices. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcome kinetic losses typically observed for hydrocarbon‐based catalyst layers.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201801965</identifier><identifier>PMID: 30251343</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalysts ; Condensed Matter ; Copolymerization ; Copolymers ; Crossovers ; Electrochemical analysis ; electrochemistry ; Electrolytic cells ; fuel cells ; Hydrocarbons ; Ion exchange ; Ionomers ; Membranes ; Monomers ; Morphology ; Neutron scattering ; Physics ; Polymers ; Proton exchange membrane fuel cells ; Relative humidity ; Soft Condensed Matter</subject><ispartof>ChemSusChem, 2018-12, Vol.11 (23), p.4033-4043</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5105-c66bbf9fbc07f6fe4a30118d963027ab88141076f08b2acf32e48d03e0849bb03</citedby><cites>FETCH-LOGICAL-c5105-c66bbf9fbc07f6fe4a30118d963027ab88141076f08b2acf32e48d03e0849bb03</cites><orcidid>0000-0001-9081-1154 ; 0000-0001-7234-891X ; 0000-0002-1653-1047 ; 0000-0002-0198-668X ; 0000-0003-2580-8439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201801965$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201801965$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30251343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-grenoble-alpes.fr/hal-03164117$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Skalski, Thomas J. G.</creatorcontrib><creatorcontrib>Adamski, Michael</creatorcontrib><creatorcontrib>Britton, Benjamin</creatorcontrib><creatorcontrib>Schibli, Eric M.</creatorcontrib><creatorcontrib>Peckham, Timothy J.</creatorcontrib><creatorcontrib>Weissbach, Thomas</creatorcontrib><creatorcontrib>Moshisuki, Takashi</creatorcontrib><creatorcontrib>Lyonnard, Sandrine</creatorcontrib><creatorcontrib>Frisken, Barbara J.</creatorcontrib><creatorcontrib>Holdcroft, Steven</creatorcontrib><title>Sulfophenylated Terphenylene Copolymer Membranes and Ionomers</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>The copolymerization of a prefunctionalized, tetrasulfonated oligophenylene monomer was investigated. The corresponding physical and electrochemical properties of the polymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. Membranes prepared from these polymers possessed ion exchange capacities ranging from 1.86 to 3.50 meq g−1 and exhibited proton conductivities of up to 338 mS cm−1 (80 °C, 95 % relative humidity). Small‐angle X‐ray scattering and small‐angle neutron scattering were used to elucidate the effect of the monomer ratios on the polymer morphology. The utility of these materials as low gas crossover, highly conductive membranes was demonstrated in fuel cell devices. Gas crossover currents through the membranes of as low as 4 % (0.16±0.03 mA cm−2) for a perfluorosulfonic acid reference membrane were demonstrated. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcame kinetic losses typically observed for hydrocarbon‐based catalyst layers. Fully hydrocarbon, nonfluorous, solid polymer electrolyte fuel cells are demonstrated with peak power densities of 770 mW cm−2 with oxygen and 456 mW cm−2 with air. In tune in the membrane! The physical and electrochemical properties of tetrasulfonated oligophenylene copolymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. These materials were utilized as low gas crossover, highly conductive membranes in fuel cell devices. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcome kinetic losses typically observed for hydrocarbon‐based catalyst layers.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Condensed Matter</subject><subject>Copolymerization</subject><subject>Copolymers</subject><subject>Crossovers</subject><subject>Electrochemical analysis</subject><subject>electrochemistry</subject><subject>Electrolytic cells</subject><subject>fuel cells</subject><subject>Hydrocarbons</subject><subject>Ion exchange</subject><subject>Ionomers</subject><subject>Membranes</subject><subject>Monomers</subject><subject>Morphology</subject><subject>Neutron scattering</subject><subject>Physics</subject><subject>Polymers</subject><subject>Proton exchange membrane fuel cells</subject><subject>Relative humidity</subject><subject>Soft Condensed Matter</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc1r3DAQxUVpaD6aa4_F0Etz2M2MJcvyoYdgkmZhQw67hdyEZI_IBtvaSnHK_vfV4nQLueQ0msdPjyc9xr4gzBEgv2xibOY5oAKsZPGBnaCSYlZI8fDxcOZ4zE5jfAKQUEn5iR1zyAvkgp-wH6uxc377SMOuM8_UZmsK00YDZbXf-m7XU8juqLfBDBQzM7TZwg8-qfEzO3Kmi3T-Os_Yr5vrdX07W97_XNRXy1lTIBSzRkprXeVsA6WTjoThgKjaSqYgpbFKoUAopQNlc9M4npNQLXACJSprgZ-xi8n30XR6Gza9CTvtzUbfXi31XgOOUiCWL5jY7xO7Df73SPFZ95vYUNel9H6MOkfMsYKyVAn99gZ98mMY0ksSVfBKFYIXiZpPVBN8jIHcIQGC3peg9yXoQwnpwtdX29H21B7wf7-egGoC_mw62r1jp-vVqv5v_hcAu5GU</recordid><startdate>20181211</startdate><enddate>20181211</enddate><creator>Skalski, Thomas J. G.</creator><creator>Adamski, Michael</creator><creator>Britton, Benjamin</creator><creator>Schibli, Eric M.</creator><creator>Peckham, Timothy J.</creator><creator>Weissbach, Thomas</creator><creator>Moshisuki, Takashi</creator><creator>Lyonnard, Sandrine</creator><creator>Frisken, Barbara J.</creator><creator>Holdcroft, Steven</creator><general>Wiley Subscription Services, Inc</general><general>ChemPubSoc Europe/Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9081-1154</orcidid><orcidid>https://orcid.org/0000-0001-7234-891X</orcidid><orcidid>https://orcid.org/0000-0002-1653-1047</orcidid><orcidid>https://orcid.org/0000-0002-0198-668X</orcidid><orcidid>https://orcid.org/0000-0003-2580-8439</orcidid></search><sort><creationdate>20181211</creationdate><title>Sulfophenylated Terphenylene Copolymer Membranes and Ionomers</title><author>Skalski, Thomas J. G. ; Adamski, Michael ; Britton, Benjamin ; Schibli, Eric M. ; Peckham, Timothy J. ; Weissbach, Thomas ; Moshisuki, Takashi ; Lyonnard, Sandrine ; Frisken, Barbara J. ; Holdcroft, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5105-c66bbf9fbc07f6fe4a30118d963027ab88141076f08b2acf32e48d03e0849bb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Condensed Matter</topic><topic>Copolymerization</topic><topic>Copolymers</topic><topic>Crossovers</topic><topic>Electrochemical analysis</topic><topic>electrochemistry</topic><topic>Electrolytic cells</topic><topic>fuel cells</topic><topic>Hydrocarbons</topic><topic>Ion exchange</topic><topic>Ionomers</topic><topic>Membranes</topic><topic>Monomers</topic><topic>Morphology</topic><topic>Neutron scattering</topic><topic>Physics</topic><topic>Polymers</topic><topic>Proton exchange membrane fuel cells</topic><topic>Relative humidity</topic><topic>Soft Condensed Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skalski, Thomas J. G.</creatorcontrib><creatorcontrib>Adamski, Michael</creatorcontrib><creatorcontrib>Britton, Benjamin</creatorcontrib><creatorcontrib>Schibli, Eric M.</creatorcontrib><creatorcontrib>Peckham, Timothy J.</creatorcontrib><creatorcontrib>Weissbach, Thomas</creatorcontrib><creatorcontrib>Moshisuki, Takashi</creatorcontrib><creatorcontrib>Lyonnard, Sandrine</creatorcontrib><creatorcontrib>Frisken, Barbara J.</creatorcontrib><creatorcontrib>Holdcroft, Steven</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skalski, Thomas J. G.</au><au>Adamski, Michael</au><au>Britton, Benjamin</au><au>Schibli, Eric M.</au><au>Peckham, Timothy J.</au><au>Weissbach, Thomas</au><au>Moshisuki, Takashi</au><au>Lyonnard, Sandrine</au><au>Frisken, Barbara J.</au><au>Holdcroft, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfophenylated Terphenylene Copolymer Membranes and Ionomers</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2018-12-11</date><risdate>2018</risdate><volume>11</volume><issue>23</issue><spage>4033</spage><epage>4043</epage><pages>4033-4043</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>The copolymerization of a prefunctionalized, tetrasulfonated oligophenylene monomer was investigated. The corresponding physical and electrochemical properties of the polymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. Membranes prepared from these polymers possessed ion exchange capacities ranging from 1.86 to 3.50 meq g−1 and exhibited proton conductivities of up to 338 mS cm−1 (80 °C, 95 % relative humidity). Small‐angle X‐ray scattering and small‐angle neutron scattering were used to elucidate the effect of the monomer ratios on the polymer morphology. The utility of these materials as low gas crossover, highly conductive membranes was demonstrated in fuel cell devices. Gas crossover currents through the membranes of as low as 4 % (0.16±0.03 mA cm−2) for a perfluorosulfonic acid reference membrane were demonstrated. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcame kinetic losses typically observed for hydrocarbon‐based catalyst layers. Fully hydrocarbon, nonfluorous, solid polymer electrolyte fuel cells are demonstrated with peak power densities of 770 mW cm−2 with oxygen and 456 mW cm−2 with air. In tune in the membrane! The physical and electrochemical properties of tetrasulfonated oligophenylene copolymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. These materials were utilized as low gas crossover, highly conductive membranes in fuel cell devices. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcome kinetic losses typically observed for hydrocarbon‐based catalyst layers.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30251343</pmid><doi>10.1002/cssc.201801965</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9081-1154</orcidid><orcidid>https://orcid.org/0000-0001-7234-891X</orcidid><orcidid>https://orcid.org/0000-0002-1653-1047</orcidid><orcidid>https://orcid.org/0000-0002-0198-668X</orcidid><orcidid>https://orcid.org/0000-0003-2580-8439</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2018-12, Vol.11 (23), p.4033-4043
issn 1864-5631
1864-564X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03164117v1
source Wiley Online Library Journals Frontfile Complete
subjects Catalysis
Catalysts
Condensed Matter
Copolymerization
Copolymers
Crossovers
Electrochemical analysis
electrochemistry
Electrolytic cells
fuel cells
Hydrocarbons
Ion exchange
Ionomers
Membranes
Monomers
Morphology
Neutron scattering
Physics
Polymers
Proton exchange membrane fuel cells
Relative humidity
Soft Condensed Matter
title Sulfophenylated Terphenylene Copolymer Membranes and Ionomers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfophenylated%20Terphenylene%20Copolymer%20Membranes%20and%20Ionomers&rft.jtitle=ChemSusChem&rft.au=Skalski,%20Thomas%20J.%20G.&rft.date=2018-12-11&rft.volume=11&rft.issue=23&rft.spage=4033&rft.epage=4043&rft.pages=4033-4043&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201801965&rft_dat=%3Cproquest_hal_p%3E2112190778%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2153985435&rft_id=info:pmid/30251343&rfr_iscdi=true