Sulfophenylated Terphenylene Copolymer Membranes and Ionomers
The copolymerization of a prefunctionalized, tetrasulfonated oligophenylene monomer was investigated. The corresponding physical and electrochemical properties of the polymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. Membranes prepared from these polym...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2018-12, Vol.11 (23), p.4033-4043 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4043 |
---|---|
container_issue | 23 |
container_start_page | 4033 |
container_title | ChemSusChem |
container_volume | 11 |
creator | Skalski, Thomas J. G. Adamski, Michael Britton, Benjamin Schibli, Eric M. Peckham, Timothy J. Weissbach, Thomas Moshisuki, Takashi Lyonnard, Sandrine Frisken, Barbara J. Holdcroft, Steven |
description | The copolymerization of a prefunctionalized, tetrasulfonated oligophenylene monomer was investigated. The corresponding physical and electrochemical properties of the polymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. Membranes prepared from these polymers possessed ion exchange capacities ranging from 1.86 to 3.50 meq g−1 and exhibited proton conductivities of up to 338 mS cm−1 (80 °C, 95 % relative humidity). Small‐angle X‐ray scattering and small‐angle neutron scattering were used to elucidate the effect of the monomer ratios on the polymer morphology. The utility of these materials as low gas crossover, highly conductive membranes was demonstrated in fuel cell devices. Gas crossover currents through the membranes of as low as 4 % (0.16±0.03 mA cm−2) for a perfluorosulfonic acid reference membrane were demonstrated. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcame kinetic losses typically observed for hydrocarbon‐based catalyst layers. Fully hydrocarbon, nonfluorous, solid polymer electrolyte fuel cells are demonstrated with peak power densities of 770 mW cm−2 with oxygen and 456 mW cm−2 with air.
In tune in the membrane! The physical and electrochemical properties of tetrasulfonated oligophenylene copolymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. These materials were utilized as low gas crossover, highly conductive membranes in fuel cell devices. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcome kinetic losses typically observed for hydrocarbon‐based catalyst layers. |
doi_str_mv | 10.1002/cssc.201801965 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03164117v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112190778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5105-c66bbf9fbc07f6fe4a30118d963027ab88141076f08b2acf32e48d03e0849bb03</originalsourceid><addsrcrecordid>eNqFkc1r3DAQxUVpaD6aa4_F0Etz2M2MJcvyoYdgkmZhQw67hdyEZI_IBtvaSnHK_vfV4nQLueQ0msdPjyc9xr4gzBEgv2xibOY5oAKsZPGBnaCSYlZI8fDxcOZ4zE5jfAKQUEn5iR1zyAvkgp-wH6uxc377SMOuM8_UZmsK00YDZbXf-m7XU8juqLfBDBQzM7TZwg8-qfEzO3Kmi3T-Os_Yr5vrdX07W97_XNRXy1lTIBSzRkprXeVsA6WTjoThgKjaSqYgpbFKoUAopQNlc9M4npNQLXACJSprgZ-xi8n30XR6Gza9CTvtzUbfXi31XgOOUiCWL5jY7xO7Df73SPFZ95vYUNel9H6MOkfMsYKyVAn99gZ98mMY0ksSVfBKFYIXiZpPVBN8jIHcIQGC3peg9yXoQwnpwtdX29H21B7wf7-egGoC_mw62r1jp-vVqv5v_hcAu5GU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2153985435</pqid></control><display><type>article</type><title>Sulfophenylated Terphenylene Copolymer Membranes and Ionomers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Skalski, Thomas J. G. ; Adamski, Michael ; Britton, Benjamin ; Schibli, Eric M. ; Peckham, Timothy J. ; Weissbach, Thomas ; Moshisuki, Takashi ; Lyonnard, Sandrine ; Frisken, Barbara J. ; Holdcroft, Steven</creator><creatorcontrib>Skalski, Thomas J. G. ; Adamski, Michael ; Britton, Benjamin ; Schibli, Eric M. ; Peckham, Timothy J. ; Weissbach, Thomas ; Moshisuki, Takashi ; Lyonnard, Sandrine ; Frisken, Barbara J. ; Holdcroft, Steven</creatorcontrib><description>The copolymerization of a prefunctionalized, tetrasulfonated oligophenylene monomer was investigated. The corresponding physical and electrochemical properties of the polymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. Membranes prepared from these polymers possessed ion exchange capacities ranging from 1.86 to 3.50 meq g−1 and exhibited proton conductivities of up to 338 mS cm−1 (80 °C, 95 % relative humidity). Small‐angle X‐ray scattering and small‐angle neutron scattering were used to elucidate the effect of the monomer ratios on the polymer morphology. The utility of these materials as low gas crossover, highly conductive membranes was demonstrated in fuel cell devices. Gas crossover currents through the membranes of as low as 4 % (0.16±0.03 mA cm−2) for a perfluorosulfonic acid reference membrane were demonstrated. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcame kinetic losses typically observed for hydrocarbon‐based catalyst layers. Fully hydrocarbon, nonfluorous, solid polymer electrolyte fuel cells are demonstrated with peak power densities of 770 mW cm−2 with oxygen and 456 mW cm−2 with air.
In tune in the membrane! The physical and electrochemical properties of tetrasulfonated oligophenylene copolymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. These materials were utilized as low gas crossover, highly conductive membranes in fuel cell devices. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcome kinetic losses typically observed for hydrocarbon‐based catalyst layers.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201801965</identifier><identifier>PMID: 30251343</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalysts ; Condensed Matter ; Copolymerization ; Copolymers ; Crossovers ; Electrochemical analysis ; electrochemistry ; Electrolytic cells ; fuel cells ; Hydrocarbons ; Ion exchange ; Ionomers ; Membranes ; Monomers ; Morphology ; Neutron scattering ; Physics ; Polymers ; Proton exchange membrane fuel cells ; Relative humidity ; Soft Condensed Matter</subject><ispartof>ChemSusChem, 2018-12, Vol.11 (23), p.4033-4043</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5105-c66bbf9fbc07f6fe4a30118d963027ab88141076f08b2acf32e48d03e0849bb03</citedby><cites>FETCH-LOGICAL-c5105-c66bbf9fbc07f6fe4a30118d963027ab88141076f08b2acf32e48d03e0849bb03</cites><orcidid>0000-0001-9081-1154 ; 0000-0001-7234-891X ; 0000-0002-1653-1047 ; 0000-0002-0198-668X ; 0000-0003-2580-8439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201801965$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201801965$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30251343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-grenoble-alpes.fr/hal-03164117$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Skalski, Thomas J. G.</creatorcontrib><creatorcontrib>Adamski, Michael</creatorcontrib><creatorcontrib>Britton, Benjamin</creatorcontrib><creatorcontrib>Schibli, Eric M.</creatorcontrib><creatorcontrib>Peckham, Timothy J.</creatorcontrib><creatorcontrib>Weissbach, Thomas</creatorcontrib><creatorcontrib>Moshisuki, Takashi</creatorcontrib><creatorcontrib>Lyonnard, Sandrine</creatorcontrib><creatorcontrib>Frisken, Barbara J.</creatorcontrib><creatorcontrib>Holdcroft, Steven</creatorcontrib><title>Sulfophenylated Terphenylene Copolymer Membranes and Ionomers</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>The copolymerization of a prefunctionalized, tetrasulfonated oligophenylene monomer was investigated. The corresponding physical and electrochemical properties of the polymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. Membranes prepared from these polymers possessed ion exchange capacities ranging from 1.86 to 3.50 meq g−1 and exhibited proton conductivities of up to 338 mS cm−1 (80 °C, 95 % relative humidity). Small‐angle X‐ray scattering and small‐angle neutron scattering were used to elucidate the effect of the monomer ratios on the polymer morphology. The utility of these materials as low gas crossover, highly conductive membranes was demonstrated in fuel cell devices. Gas crossover currents through the membranes of as low as 4 % (0.16±0.03 mA cm−2) for a perfluorosulfonic acid reference membrane were demonstrated. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcame kinetic losses typically observed for hydrocarbon‐based catalyst layers. Fully hydrocarbon, nonfluorous, solid polymer electrolyte fuel cells are demonstrated with peak power densities of 770 mW cm−2 with oxygen and 456 mW cm−2 with air.
In tune in the membrane! The physical and electrochemical properties of tetrasulfonated oligophenylene copolymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. These materials were utilized as low gas crossover, highly conductive membranes in fuel cell devices. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcome kinetic losses typically observed for hydrocarbon‐based catalyst layers.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Condensed Matter</subject><subject>Copolymerization</subject><subject>Copolymers</subject><subject>Crossovers</subject><subject>Electrochemical analysis</subject><subject>electrochemistry</subject><subject>Electrolytic cells</subject><subject>fuel cells</subject><subject>Hydrocarbons</subject><subject>Ion exchange</subject><subject>Ionomers</subject><subject>Membranes</subject><subject>Monomers</subject><subject>Morphology</subject><subject>Neutron scattering</subject><subject>Physics</subject><subject>Polymers</subject><subject>Proton exchange membrane fuel cells</subject><subject>Relative humidity</subject><subject>Soft Condensed Matter</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc1r3DAQxUVpaD6aa4_F0Etz2M2MJcvyoYdgkmZhQw67hdyEZI_IBtvaSnHK_vfV4nQLueQ0msdPjyc9xr4gzBEgv2xibOY5oAKsZPGBnaCSYlZI8fDxcOZ4zE5jfAKQUEn5iR1zyAvkgp-wH6uxc377SMOuM8_UZmsK00YDZbXf-m7XU8juqLfBDBQzM7TZwg8-qfEzO3Kmi3T-Os_Yr5vrdX07W97_XNRXy1lTIBSzRkprXeVsA6WTjoThgKjaSqYgpbFKoUAopQNlc9M4npNQLXACJSprgZ-xi8n30XR6Gza9CTvtzUbfXi31XgOOUiCWL5jY7xO7Df73SPFZ95vYUNel9H6MOkfMsYKyVAn99gZ98mMY0ksSVfBKFYIXiZpPVBN8jIHcIQGC3peg9yXoQwnpwtdX29H21B7wf7-egGoC_mw62r1jp-vVqv5v_hcAu5GU</recordid><startdate>20181211</startdate><enddate>20181211</enddate><creator>Skalski, Thomas J. G.</creator><creator>Adamski, Michael</creator><creator>Britton, Benjamin</creator><creator>Schibli, Eric M.</creator><creator>Peckham, Timothy J.</creator><creator>Weissbach, Thomas</creator><creator>Moshisuki, Takashi</creator><creator>Lyonnard, Sandrine</creator><creator>Frisken, Barbara J.</creator><creator>Holdcroft, Steven</creator><general>Wiley Subscription Services, Inc</general><general>ChemPubSoc Europe/Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9081-1154</orcidid><orcidid>https://orcid.org/0000-0001-7234-891X</orcidid><orcidid>https://orcid.org/0000-0002-1653-1047</orcidid><orcidid>https://orcid.org/0000-0002-0198-668X</orcidid><orcidid>https://orcid.org/0000-0003-2580-8439</orcidid></search><sort><creationdate>20181211</creationdate><title>Sulfophenylated Terphenylene Copolymer Membranes and Ionomers</title><author>Skalski, Thomas J. G. ; Adamski, Michael ; Britton, Benjamin ; Schibli, Eric M. ; Peckham, Timothy J. ; Weissbach, Thomas ; Moshisuki, Takashi ; Lyonnard, Sandrine ; Frisken, Barbara J. ; Holdcroft, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5105-c66bbf9fbc07f6fe4a30118d963027ab88141076f08b2acf32e48d03e0849bb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Condensed Matter</topic><topic>Copolymerization</topic><topic>Copolymers</topic><topic>Crossovers</topic><topic>Electrochemical analysis</topic><topic>electrochemistry</topic><topic>Electrolytic cells</topic><topic>fuel cells</topic><topic>Hydrocarbons</topic><topic>Ion exchange</topic><topic>Ionomers</topic><topic>Membranes</topic><topic>Monomers</topic><topic>Morphology</topic><topic>Neutron scattering</topic><topic>Physics</topic><topic>Polymers</topic><topic>Proton exchange membrane fuel cells</topic><topic>Relative humidity</topic><topic>Soft Condensed Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skalski, Thomas J. G.</creatorcontrib><creatorcontrib>Adamski, Michael</creatorcontrib><creatorcontrib>Britton, Benjamin</creatorcontrib><creatorcontrib>Schibli, Eric M.</creatorcontrib><creatorcontrib>Peckham, Timothy J.</creatorcontrib><creatorcontrib>Weissbach, Thomas</creatorcontrib><creatorcontrib>Moshisuki, Takashi</creatorcontrib><creatorcontrib>Lyonnard, Sandrine</creatorcontrib><creatorcontrib>Frisken, Barbara J.</creatorcontrib><creatorcontrib>Holdcroft, Steven</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skalski, Thomas J. G.</au><au>Adamski, Michael</au><au>Britton, Benjamin</au><au>Schibli, Eric M.</au><au>Peckham, Timothy J.</au><au>Weissbach, Thomas</au><au>Moshisuki, Takashi</au><au>Lyonnard, Sandrine</au><au>Frisken, Barbara J.</au><au>Holdcroft, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfophenylated Terphenylene Copolymer Membranes and Ionomers</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2018-12-11</date><risdate>2018</risdate><volume>11</volume><issue>23</issue><spage>4033</spage><epage>4043</epage><pages>4033-4043</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>The copolymerization of a prefunctionalized, tetrasulfonated oligophenylene monomer was investigated. The corresponding physical and electrochemical properties of the polymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. Membranes prepared from these polymers possessed ion exchange capacities ranging from 1.86 to 3.50 meq g−1 and exhibited proton conductivities of up to 338 mS cm−1 (80 °C, 95 % relative humidity). Small‐angle X‐ray scattering and small‐angle neutron scattering were used to elucidate the effect of the monomer ratios on the polymer morphology. The utility of these materials as low gas crossover, highly conductive membranes was demonstrated in fuel cell devices. Gas crossover currents through the membranes of as low as 4 % (0.16±0.03 mA cm−2) for a perfluorosulfonic acid reference membrane were demonstrated. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcame kinetic losses typically observed for hydrocarbon‐based catalyst layers. Fully hydrocarbon, nonfluorous, solid polymer electrolyte fuel cells are demonstrated with peak power densities of 770 mW cm−2 with oxygen and 456 mW cm−2 with air.
In tune in the membrane! The physical and electrochemical properties of tetrasulfonated oligophenylene copolymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. These materials were utilized as low gas crossover, highly conductive membranes in fuel cell devices. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcome kinetic losses typically observed for hydrocarbon‐based catalyst layers.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30251343</pmid><doi>10.1002/cssc.201801965</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9081-1154</orcidid><orcidid>https://orcid.org/0000-0001-7234-891X</orcidid><orcidid>https://orcid.org/0000-0002-1653-1047</orcidid><orcidid>https://orcid.org/0000-0002-0198-668X</orcidid><orcidid>https://orcid.org/0000-0003-2580-8439</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2018-12, Vol.11 (23), p.4033-4043 |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03164117v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Catalysis Catalysts Condensed Matter Copolymerization Copolymers Crossovers Electrochemical analysis electrochemistry Electrolytic cells fuel cells Hydrocarbons Ion exchange Ionomers Membranes Monomers Morphology Neutron scattering Physics Polymers Proton exchange membrane fuel cells Relative humidity Soft Condensed Matter |
title | Sulfophenylated Terphenylene Copolymer Membranes and Ionomers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfophenylated%20Terphenylene%20Copolymer%20Membranes%20and%20Ionomers&rft.jtitle=ChemSusChem&rft.au=Skalski,%20Thomas%20J.%20G.&rft.date=2018-12-11&rft.volume=11&rft.issue=23&rft.spage=4033&rft.epage=4043&rft.pages=4033-4043&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201801965&rft_dat=%3Cproquest_hal_p%3E2112190778%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2153985435&rft_id=info:pmid/30251343&rfr_iscdi=true |