Monte Carlo prediction of ballistic effect on phonon transport in silicon in the presence of small localized heat source

Understanding phonon transport at nanoscale is critically important for thermal nanometrology applications including scanning thermal microscopy, three-omega and time domain thermoreflectance experiments. In this paper, a multidimensional non-gray Monte Carlo simulation is developed to investigate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2019-10, Vol.30 (41), p.415403-415403
Hauptverfasser: Nghiem, Thu Trang, Trannoy, Nathalie, Randrianalisoa, Jaona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 415403
container_issue 41
container_start_page 415403
container_title Nanotechnology
container_volume 30
creator Nghiem, Thu Trang
Trannoy, Nathalie
Randrianalisoa, Jaona
description Understanding phonon transport at nanoscale is critically important for thermal nanometrology applications including scanning thermal microscopy, three-omega and time domain thermoreflectance experiments. In this paper, a multidimensional non-gray Monte Carlo simulation is developed to investigate the ballistic phonon transport in a silicon sample heated on the top by a small localized heater line. We observed that heat confinement occurs for very small heat sources. This result contradicts the classical Fourier model, according to which the heat penetration depth is always significant, even with small sources. The temperature fields inside the sample exhibit different penetration depths depending strongly on the heater line size. Maximum thermal resistance and a large interface temperature jump take place in the limit of very small heater width compared to the phonon mean free path due to the nonequilibrium and ballistic nature of phonon transport. Increasing the heater width leads to a decrease in the heat flux and temperature jump. In the limit of a very large heat source, the heat flux and temperature jump become independent of heat source size. In accordance with experimental investigations for the case of sapphire material (Siemens et al 2010 Nature Mat. 9 26-30), the thermal resistance of the silicon sample due to the localized heat source decreases and then tends to reach a plateau with increasing source size from tens of nanometers to micrometers. These results are important, not only for understanding the thermal transport in the sample during nanometrology experiments, but also for the design and manipulation of heat at nanoscale.
doi_str_mv 10.1088/1361-6528/ab2c1c
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03163555v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2246909592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-cef9eaf395fcfa5f649721d9759f6d3adc5c532becf1aee6295bdd84d55bb7473</originalsourceid><addsrcrecordid>eNp9kc1rVTEQxYMo-KzuXWZpwdvm834sy0Nt4ZVu6jrkJhNeSl5yTfJE_evN5UpXUhiY4fCbA3MGoY-UXFEyjteU97TrJRuv9cwMNa_Q7ll6jXZkkkMnxCjeonelPBFC6cjoDv26T7EC3uscEl4yWG-qTxEnh2cdgi_VGwzOgam4ycsxxdZq1rEsKVfsIy4-eNPENtYjrCYFooHVopyaBw7J6OD_gMVH0BWXdM4G3qM3TocCH_71C_T965fH_W13ePh2t785dIaPtHYG3ATa8Uk647R0vZgGRu00yMn1lmtrpJGczWAc1QA9m-Rs7SislPM8iIFfoMvN96iDWrI_6fxbJe3V7c1BrRrhtOdSyp-0sZ82dsnpxxlKVSdfDISgI6RzUYyJfmpJTqyhZENNTqVkcM_elKj1IWpNX63pq-0hbeXztuLTop5aCLHd_RJ--R886pgUJ0rQVlIQrhbr-F9G2pyy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2246909592</pqid></control><display><type>article</type><title>Monte Carlo prediction of ballistic effect on phonon transport in silicon in the presence of small localized heat source</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Nghiem, Thu Trang ; Trannoy, Nathalie ; Randrianalisoa, Jaona</creator><creatorcontrib>Nghiem, Thu Trang ; Trannoy, Nathalie ; Randrianalisoa, Jaona</creatorcontrib><description>Understanding phonon transport at nanoscale is critically important for thermal nanometrology applications including scanning thermal microscopy, three-omega and time domain thermoreflectance experiments. In this paper, a multidimensional non-gray Monte Carlo simulation is developed to investigate the ballistic phonon transport in a silicon sample heated on the top by a small localized heater line. We observed that heat confinement occurs for very small heat sources. This result contradicts the classical Fourier model, according to which the heat penetration depth is always significant, even with small sources. The temperature fields inside the sample exhibit different penetration depths depending strongly on the heater line size. Maximum thermal resistance and a large interface temperature jump take place in the limit of very small heater width compared to the phonon mean free path due to the nonequilibrium and ballistic nature of phonon transport. Increasing the heater width leads to a decrease in the heat flux and temperature jump. In the limit of a very large heat source, the heat flux and temperature jump become independent of heat source size. In accordance with experimental investigations for the case of sapphire material (Siemens et al 2010 Nature Mat. 9 26-30), the thermal resistance of the silicon sample due to the localized heat source decreases and then tends to reach a plateau with increasing source size from tens of nanometers to micrometers. These results are important, not only for understanding the thermal transport in the sample during nanometrology experiments, but also for the design and manipulation of heat at nanoscale.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/ab2c1c</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>ballistic effect ; Civil Engineering ; Construction durable ; Eco-conception ; Electric power ; Engineering Sciences ; localized heat source ; Materials ; Mechanics ; Monte Carlo simulation ; nanoscale heat transport ; nonequilibrium ; Optics ; Photonic ; Physics ; silicon ; thermal resistance</subject><ispartof>Nanotechnology, 2019-10, Vol.30 (41), p.415403-415403</ispartof><rights>2019 IOP Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-cef9eaf395fcfa5f649721d9759f6d3adc5c532becf1aee6295bdd84d55bb7473</citedby><cites>FETCH-LOGICAL-c381t-cef9eaf395fcfa5f649721d9759f6d3adc5c532becf1aee6295bdd84d55bb7473</cites><orcidid>0000-0002-6171-9970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/ab2c1c/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,53825,53872</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03163555$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nghiem, Thu Trang</creatorcontrib><creatorcontrib>Trannoy, Nathalie</creatorcontrib><creatorcontrib>Randrianalisoa, Jaona</creatorcontrib><title>Monte Carlo prediction of ballistic effect on phonon transport in silicon in the presence of small localized heat source</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Understanding phonon transport at nanoscale is critically important for thermal nanometrology applications including scanning thermal microscopy, three-omega and time domain thermoreflectance experiments. In this paper, a multidimensional non-gray Monte Carlo simulation is developed to investigate the ballistic phonon transport in a silicon sample heated on the top by a small localized heater line. We observed that heat confinement occurs for very small heat sources. This result contradicts the classical Fourier model, according to which the heat penetration depth is always significant, even with small sources. The temperature fields inside the sample exhibit different penetration depths depending strongly on the heater line size. Maximum thermal resistance and a large interface temperature jump take place in the limit of very small heater width compared to the phonon mean free path due to the nonequilibrium and ballistic nature of phonon transport. Increasing the heater width leads to a decrease in the heat flux and temperature jump. In the limit of a very large heat source, the heat flux and temperature jump become independent of heat source size. In accordance with experimental investigations for the case of sapphire material (Siemens et al 2010 Nature Mat. 9 26-30), the thermal resistance of the silicon sample due to the localized heat source decreases and then tends to reach a plateau with increasing source size from tens of nanometers to micrometers. These results are important, not only for understanding the thermal transport in the sample during nanometrology experiments, but also for the design and manipulation of heat at nanoscale.</description><subject>ballistic effect</subject><subject>Civil Engineering</subject><subject>Construction durable</subject><subject>Eco-conception</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><subject>localized heat source</subject><subject>Materials</subject><subject>Mechanics</subject><subject>Monte Carlo simulation</subject><subject>nanoscale heat transport</subject><subject>nonequilibrium</subject><subject>Optics</subject><subject>Photonic</subject><subject>Physics</subject><subject>silicon</subject><subject>thermal resistance</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc1rVTEQxYMo-KzuXWZpwdvm834sy0Nt4ZVu6jrkJhNeSl5yTfJE_evN5UpXUhiY4fCbA3MGoY-UXFEyjteU97TrJRuv9cwMNa_Q7ll6jXZkkkMnxCjeonelPBFC6cjoDv26T7EC3uscEl4yWG-qTxEnh2cdgi_VGwzOgam4ycsxxdZq1rEsKVfsIy4-eNPENtYjrCYFooHVopyaBw7J6OD_gMVH0BWXdM4G3qM3TocCH_71C_T965fH_W13ePh2t785dIaPtHYG3ATa8Uk647R0vZgGRu00yMn1lmtrpJGczWAc1QA9m-Rs7SislPM8iIFfoMvN96iDWrI_6fxbJe3V7c1BrRrhtOdSyp-0sZ82dsnpxxlKVSdfDISgI6RzUYyJfmpJTqyhZENNTqVkcM_elKj1IWpNX63pq-0hbeXztuLTop5aCLHd_RJ--R886pgUJ0rQVlIQrhbr-F9G2pyy</recordid><startdate>20191011</startdate><enddate>20191011</enddate><creator>Nghiem, Thu Trang</creator><creator>Trannoy, Nathalie</creator><creator>Randrianalisoa, Jaona</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6171-9970</orcidid></search><sort><creationdate>20191011</creationdate><title>Monte Carlo prediction of ballistic effect on phonon transport in silicon in the presence of small localized heat source</title><author>Nghiem, Thu Trang ; Trannoy, Nathalie ; Randrianalisoa, Jaona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-cef9eaf395fcfa5f649721d9759f6d3adc5c532becf1aee6295bdd84d55bb7473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ballistic effect</topic><topic>Civil Engineering</topic><topic>Construction durable</topic><topic>Eco-conception</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><topic>localized heat source</topic><topic>Materials</topic><topic>Mechanics</topic><topic>Monte Carlo simulation</topic><topic>nanoscale heat transport</topic><topic>nonequilibrium</topic><topic>Optics</topic><topic>Photonic</topic><topic>Physics</topic><topic>silicon</topic><topic>thermal resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nghiem, Thu Trang</creatorcontrib><creatorcontrib>Trannoy, Nathalie</creatorcontrib><creatorcontrib>Randrianalisoa, Jaona</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nghiem, Thu Trang</au><au>Trannoy, Nathalie</au><au>Randrianalisoa, Jaona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo prediction of ballistic effect on phonon transport in silicon in the presence of small localized heat source</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2019-10-11</date><risdate>2019</risdate><volume>30</volume><issue>41</issue><spage>415403</spage><epage>415403</epage><pages>415403-415403</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Understanding phonon transport at nanoscale is critically important for thermal nanometrology applications including scanning thermal microscopy, three-omega and time domain thermoreflectance experiments. In this paper, a multidimensional non-gray Monte Carlo simulation is developed to investigate the ballistic phonon transport in a silicon sample heated on the top by a small localized heater line. We observed that heat confinement occurs for very small heat sources. This result contradicts the classical Fourier model, according to which the heat penetration depth is always significant, even with small sources. The temperature fields inside the sample exhibit different penetration depths depending strongly on the heater line size. Maximum thermal resistance and a large interface temperature jump take place in the limit of very small heater width compared to the phonon mean free path due to the nonequilibrium and ballistic nature of phonon transport. Increasing the heater width leads to a decrease in the heat flux and temperature jump. In the limit of a very large heat source, the heat flux and temperature jump become independent of heat source size. In accordance with experimental investigations for the case of sapphire material (Siemens et al 2010 Nature Mat. 9 26-30), the thermal resistance of the silicon sample due to the localized heat source decreases and then tends to reach a plateau with increasing source size from tens of nanometers to micrometers. These results are important, not only for understanding the thermal transport in the sample during nanometrology experiments, but also for the design and manipulation of heat at nanoscale.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6528/ab2c1c</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6171-9970</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2019-10, Vol.30 (41), p.415403-415403
issn 0957-4484
1361-6528
language eng
recordid cdi_hal_primary_oai_HAL_hal_03163555v1
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects ballistic effect
Civil Engineering
Construction durable
Eco-conception
Electric power
Engineering Sciences
localized heat source
Materials
Mechanics
Monte Carlo simulation
nanoscale heat transport
nonequilibrium
Optics
Photonic
Physics
silicon
thermal resistance
title Monte Carlo prediction of ballistic effect on phonon transport in silicon in the presence of small localized heat source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20prediction%20of%20ballistic%20effect%20on%20phonon%20transport%20in%20silicon%20in%20the%20presence%20of%20small%20localized%20heat%20source&rft.jtitle=Nanotechnology&rft.au=Nghiem,%20Thu%20Trang&rft.date=2019-10-11&rft.volume=30&rft.issue=41&rft.spage=415403&rft.epage=415403&rft.pages=415403-415403&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/ab2c1c&rft_dat=%3Cproquest_hal_p%3E2246909592%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2246909592&rft_id=info:pmid/&rfr_iscdi=true