MINIMAX ESTIMATION OF LINEAR AND QUADRATIC FUNCTIONALS ON SPARSITY CLASSES

For the Gaussian sequence model, we obtain nonasymptotic minimax rates of estimation of the linear, quadratic and the ℓ2-norm functionals on classes of sparse vectors and construct optimal estimators that attain these rates. The main object of interest is the class B0(s) of s-sparse vectors θ = (θ1,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2017-06, Vol.45 (3), p.923-958
Hauptverfasser: Collier, Olivier, Comminges, Laëtitia, Tsybakov, Alexandre B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 958
container_issue 3
container_start_page 923
container_title The Annals of statistics
container_volume 45
creator Collier, Olivier
Comminges, Laëtitia
Tsybakov, Alexandre B.
description For the Gaussian sequence model, we obtain nonasymptotic minimax rates of estimation of the linear, quadratic and the ℓ2-norm functionals on classes of sparse vectors and construct optimal estimators that attain these rates. The main object of interest is the class B0(s) of s-sparse vectors θ = (θ1,..., θd), for which we also provide completely adaptive estimators (independent of s and of the noise variance σ) having logarithmically slower rates than the minimax ones. Furthermore, we obtain the minimax rates on the ℓq-balls Bq(r) = {θ ϵ ℝd : ∥θ∥q ≤ r} where 0 < q ≤ 2, and ${\Vert \mathrm{\theta }\Vert }_{\mathrm{q}}={\left({\mathrm{\Sigma }}_{\mathrm{i}=1}^{\mathrm{d}}|{\mathrm{\theta }}_{\mathrm{i}}{|}^{\mathrm{q}}\right)}^{1/\mathrm{q}}$. This analysis shows that there are, in general, three zones in the rates of convergence that we call the sparse zone, the dense zone and the degenerate zone, while a fourth zone appears for estimation of the quadratic functional. We show that, as opposed to estimation of θ, the correct logarithmic terms in the optimal rates for the sparse zone scale as log(d/s2) and not as log(d/s). For the class B0(s), the rates of estimation of the linear functional and of the ℓ2-norm have a simple elbow at s = √d (boundary between the sparse and the dense zones) and exhibit similar performances, whereas the estimation of the quadratic functional Q(θ) reveals more complex effects: the minimax risk on B0(s) is infinite and the sparseness assumption needs to be combined with a bound on the ℓ2-norm. Finally, we apply our results on estimation of the ℓ2-norm to the problem of testing against sparse alternatives. In particular, we obtain a nonasymptotic analog of the Ingster–Donoho–Jin theory revealing some effects that were not captured by the previous asymptotic analysis.
doi_str_mv 10.1214/15-AOS1432
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03163153v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26362820</jstor_id><sourcerecordid>26362820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-4b0ee8d4d802e80ddaabd24f8e3fcb8c95ca2601c02eead96c13a561b95ea3b93</originalsourceid><addsrcrecordid>eNo90M9LwzAUB_AgCs7pxbsQ8KRQzW-bY-g6V-laXTrQU0jbFDemne0m-N-bsbHTg_c-fHl8AbjG6AETzB4xD1SuMaPkBAwIFmEQSiFOwQAhiQJOBTsHF32_RAhxyegAvEyTLJmqdxjrws8iyTOYj2GaZLGaQZWN4NtcjWb-EMHxPIt2QKUaeqZf1UwnxQeMUqV1rC_BWWNXvbs6zCGYj-MimgRp_pxEKg0qyvEmYCVyLqxZHSLiQlTX1pY1YU3oaFOVYSV5ZYlAuPJnZ2spKkwtF7iU3FlaSjoEd_vcT7sy627xZbs_09qFmajU7HaIYkExp7_Y29u9XXftz9b1G7Nst923f89gSZ6Y8PUQr-73quravu9cc4zFyOx6NZibQ68e3-zxst-03VESQQUJCaL_N2tsTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927468962</pqid></control><display><type>article</type><title>MINIMAX ESTIMATION OF LINEAR AND QUADRATIC FUNCTIONALS ON SPARSITY CLASSES</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Collier, Olivier ; Comminges, Laëtitia ; Tsybakov, Alexandre B.</creator><creatorcontrib>Collier, Olivier ; Comminges, Laëtitia ; Tsybakov, Alexandre B.</creatorcontrib><description>For the Gaussian sequence model, we obtain nonasymptotic minimax rates of estimation of the linear, quadratic and the ℓ2-norm functionals on classes of sparse vectors and construct optimal estimators that attain these rates. The main object of interest is the class B0(s) of s-sparse vectors θ = (θ1,..., θd), for which we also provide completely adaptive estimators (independent of s and of the noise variance σ) having logarithmically slower rates than the minimax ones. Furthermore, we obtain the minimax rates on the ℓq-balls Bq(r) = {θ ϵ ℝd : ∥θ∥q ≤ r} where 0 &lt; q ≤ 2, and ${\Vert \mathrm{\theta }\Vert }_{\mathrm{q}}={\left({\mathrm{\Sigma }}_{\mathrm{i}=1}^{\mathrm{d}}|{\mathrm{\theta }}_{\mathrm{i}}{|}^{\mathrm{q}}\right)}^{1/\mathrm{q}}$. This analysis shows that there are, in general, three zones in the rates of convergence that we call the sparse zone, the dense zone and the degenerate zone, while a fourth zone appears for estimation of the quadratic functional. We show that, as opposed to estimation of θ, the correct logarithmic terms in the optimal rates for the sparse zone scale as log(d/s2) and not as log(d/s). For the class B0(s), the rates of estimation of the linear functional and of the ℓ2-norm have a simple elbow at s = √d (boundary between the sparse and the dense zones) and exhibit similar performances, whereas the estimation of the quadratic functional Q(θ) reveals more complex effects: the minimax risk on B0(s) is infinite and the sparseness assumption needs to be combined with a bound on the ℓ2-norm. Finally, we apply our results on estimation of the ℓ2-norm to the problem of testing against sparse alternatives. In particular, we obtain a nonasymptotic analog of the Ingster–Donoho–Jin theory revealing some effects that were not captured by the previous asymptotic analysis.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/15-AOS1432</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Asymptotic methods ; Convergence ; Elbow (anatomy) ; Estimating techniques ; Estimators ; Functionals ; Mathematics ; Minimax technique ; Normal distribution ; Statistics ; Studies ; Vector space</subject><ispartof>The Annals of statistics, 2017-06, Vol.45 (3), p.923-958</ispartof><rights>Copyright © 2017 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Jun 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-4b0ee8d4d802e80ddaabd24f8e3fcb8c95ca2601c02eead96c13a561b95ea3b93</citedby><cites>FETCH-LOGICAL-c351t-4b0ee8d4d802e80ddaabd24f8e3fcb8c95ca2601c02eead96c13a561b95ea3b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26362820$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26362820$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03163153$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Collier, Olivier</creatorcontrib><creatorcontrib>Comminges, Laëtitia</creatorcontrib><creatorcontrib>Tsybakov, Alexandre B.</creatorcontrib><title>MINIMAX ESTIMATION OF LINEAR AND QUADRATIC FUNCTIONALS ON SPARSITY CLASSES</title><title>The Annals of statistics</title><description>For the Gaussian sequence model, we obtain nonasymptotic minimax rates of estimation of the linear, quadratic and the ℓ2-norm functionals on classes of sparse vectors and construct optimal estimators that attain these rates. The main object of interest is the class B0(s) of s-sparse vectors θ = (θ1,..., θd), for which we also provide completely adaptive estimators (independent of s and of the noise variance σ) having logarithmically slower rates than the minimax ones. Furthermore, we obtain the minimax rates on the ℓq-balls Bq(r) = {θ ϵ ℝd : ∥θ∥q ≤ r} where 0 &lt; q ≤ 2, and ${\Vert \mathrm{\theta }\Vert }_{\mathrm{q}}={\left({\mathrm{\Sigma }}_{\mathrm{i}=1}^{\mathrm{d}}|{\mathrm{\theta }}_{\mathrm{i}}{|}^{\mathrm{q}}\right)}^{1/\mathrm{q}}$. This analysis shows that there are, in general, three zones in the rates of convergence that we call the sparse zone, the dense zone and the degenerate zone, while a fourth zone appears for estimation of the quadratic functional. We show that, as opposed to estimation of θ, the correct logarithmic terms in the optimal rates for the sparse zone scale as log(d/s2) and not as log(d/s). For the class B0(s), the rates of estimation of the linear functional and of the ℓ2-norm have a simple elbow at s = √d (boundary between the sparse and the dense zones) and exhibit similar performances, whereas the estimation of the quadratic functional Q(θ) reveals more complex effects: the minimax risk on B0(s) is infinite and the sparseness assumption needs to be combined with a bound on the ℓ2-norm. Finally, we apply our results on estimation of the ℓ2-norm to the problem of testing against sparse alternatives. In particular, we obtain a nonasymptotic analog of the Ingster–Donoho–Jin theory revealing some effects that were not captured by the previous asymptotic analysis.</description><subject>Asymptotic methods</subject><subject>Convergence</subject><subject>Elbow (anatomy)</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>Functionals</subject><subject>Mathematics</subject><subject>Minimax technique</subject><subject>Normal distribution</subject><subject>Statistics</subject><subject>Studies</subject><subject>Vector space</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo90M9LwzAUB_AgCs7pxbsQ8KRQzW-bY-g6V-laXTrQU0jbFDemne0m-N-bsbHTg_c-fHl8AbjG6AETzB4xD1SuMaPkBAwIFmEQSiFOwQAhiQJOBTsHF32_RAhxyegAvEyTLJmqdxjrws8iyTOYj2GaZLGaQZWN4NtcjWb-EMHxPIt2QKUaeqZf1UwnxQeMUqV1rC_BWWNXvbs6zCGYj-MimgRp_pxEKg0qyvEmYCVyLqxZHSLiQlTX1pY1YU3oaFOVYSV5ZYlAuPJnZ2spKkwtF7iU3FlaSjoEd_vcT7sy627xZbs_09qFmajU7HaIYkExp7_Y29u9XXftz9b1G7Nst923f89gSZ6Y8PUQr-73quravu9cc4zFyOx6NZibQ68e3-zxst-03VESQQUJCaL_N2tsTQ</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Collier, Olivier</creator><creator>Comminges, Laëtitia</creator><creator>Tsybakov, Alexandre B.</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>1XC</scope></search><sort><creationdate>20170601</creationdate><title>MINIMAX ESTIMATION OF LINEAR AND QUADRATIC FUNCTIONALS ON SPARSITY CLASSES</title><author>Collier, Olivier ; Comminges, Laëtitia ; Tsybakov, Alexandre B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-4b0ee8d4d802e80ddaabd24f8e3fcb8c95ca2601c02eead96c13a561b95ea3b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asymptotic methods</topic><topic>Convergence</topic><topic>Elbow (anatomy)</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>Functionals</topic><topic>Mathematics</topic><topic>Minimax technique</topic><topic>Normal distribution</topic><topic>Statistics</topic><topic>Studies</topic><topic>Vector space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collier, Olivier</creatorcontrib><creatorcontrib>Comminges, Laëtitia</creatorcontrib><creatorcontrib>Tsybakov, Alexandre B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collier, Olivier</au><au>Comminges, Laëtitia</au><au>Tsybakov, Alexandre B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MINIMAX ESTIMATION OF LINEAR AND QUADRATIC FUNCTIONALS ON SPARSITY CLASSES</atitle><jtitle>The Annals of statistics</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>45</volume><issue>3</issue><spage>923</spage><epage>958</epage><pages>923-958</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>For the Gaussian sequence model, we obtain nonasymptotic minimax rates of estimation of the linear, quadratic and the ℓ2-norm functionals on classes of sparse vectors and construct optimal estimators that attain these rates. The main object of interest is the class B0(s) of s-sparse vectors θ = (θ1,..., θd), for which we also provide completely adaptive estimators (independent of s and of the noise variance σ) having logarithmically slower rates than the minimax ones. Furthermore, we obtain the minimax rates on the ℓq-balls Bq(r) = {θ ϵ ℝd : ∥θ∥q ≤ r} where 0 &lt; q ≤ 2, and ${\Vert \mathrm{\theta }\Vert }_{\mathrm{q}}={\left({\mathrm{\Sigma }}_{\mathrm{i}=1}^{\mathrm{d}}|{\mathrm{\theta }}_{\mathrm{i}}{|}^{\mathrm{q}}\right)}^{1/\mathrm{q}}$. This analysis shows that there are, in general, three zones in the rates of convergence that we call the sparse zone, the dense zone and the degenerate zone, while a fourth zone appears for estimation of the quadratic functional. We show that, as opposed to estimation of θ, the correct logarithmic terms in the optimal rates for the sparse zone scale as log(d/s2) and not as log(d/s). For the class B0(s), the rates of estimation of the linear functional and of the ℓ2-norm have a simple elbow at s = √d (boundary between the sparse and the dense zones) and exhibit similar performances, whereas the estimation of the quadratic functional Q(θ) reveals more complex effects: the minimax risk on B0(s) is infinite and the sparseness assumption needs to be combined with a bound on the ℓ2-norm. Finally, we apply our results on estimation of the ℓ2-norm to the problem of testing against sparse alternatives. In particular, we obtain a nonasymptotic analog of the Ingster–Donoho–Jin theory revealing some effects that were not captured by the previous asymptotic analysis.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/15-AOS1432</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2017-06, Vol.45 (3), p.923-958
issn 0090-5364
2168-8966
language eng
recordid cdi_hal_primary_oai_HAL_hal_03163153v1
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects Asymptotic methods
Convergence
Elbow (anatomy)
Estimating techniques
Estimators
Functionals
Mathematics
Minimax technique
Normal distribution
Statistics
Studies
Vector space
title MINIMAX ESTIMATION OF LINEAR AND QUADRATIC FUNCTIONALS ON SPARSITY CLASSES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MINIMAX%20ESTIMATION%20OF%20LINEAR%20AND%20QUADRATIC%20FUNCTIONALS%20ON%20SPARSITY%20CLASSES&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Collier,%20Olivier&rft.date=2017-06-01&rft.volume=45&rft.issue=3&rft.spage=923&rft.epage=958&rft.pages=923-958&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/15-AOS1432&rft_dat=%3Cjstor_hal_p%3E26362820%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927468962&rft_id=info:pmid/&rft_jstor_id=26362820&rfr_iscdi=true