Analytical models of the wall-pressure spectrum under a turbulent boundary layer with adverse pressure gradient

This paper presents a comprehensive analytical approach to the modelling of wall-pressure fluctuations under a turbulent boundary layer, unifying and expanding the analytical models that have been proposed over many decades. The Poisson equation governing pressure fluctuations is Fourier transformed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2019-10, Vol.877, p.1007-1062
Hauptverfasser: Grasso, G., Jaiswal, P., Wu, H., Moreau, S., Roger, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1062
container_issue
container_start_page 1007
container_title Journal of fluid mechanics
container_volume 877
creator Grasso, G.
Jaiswal, P.
Wu, H.
Moreau, S.
Roger, M.
description This paper presents a comprehensive analytical approach to the modelling of wall-pressure fluctuations under a turbulent boundary layer, unifying and expanding the analytical models that have been proposed over many decades. The Poisson equation governing pressure fluctuations is Fourier transformed in the wavenumber domain to obtain a modified Helmholtz equation, which is solved with a Green’s function technique. The source term of the differential equations is composed of turbulence–mean shear and turbulence–turbulence interaction terms, which are modelled separately within the hypothesis of a joint normal probability distribution of the turbulent field. The functional expression of the turbulence statistics is shown to be the most critical point for a correct representation of the wall-pressure spectrum. The effect of various assumptions on the shape of the longitudinal correlation function of turbulence is assessed in the first place with purely analytical considerations using an idealised flow model. Then, the effect of the hypothesis on the spectral distribution of boundary-layer turbulence on the resulting wall-pressure spectrum is compared with the results of direct numerical simulation computations and pressure measurements on a controlled-diffusion aerofoil. The boundary layer developing over the suction side of this aerofoil in test conditions is characterised by an adverse pressure gradient. The final part of the paper discusses the numerical aspect of wall-pressure spectrum computation. A Monte Carlo technique is used for a fast evaluation of the multi-dimensional integral formulation developed in the theoretical part.
doi_str_mv 10.1017/jfm.2019.616
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03158378v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353045620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-e02fcd1edb4665d367b0372d9ed3d66be450cd6848a007df72ffdb23652aec113</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKd3PkDAK8HOk6RJ28sx1AkDb_Q6pM2p60jXmrQbe3tTJl4d-M93fg4fIfcMFgxY9ryr2wUHViwUUxdkxlJVJJlK5SWZAXCeMMbhmtyEsANgAopsRrrl3rjT0FTG0baz6ALtajpskR6Nc0nvMYTRIw09VoMfWzruLXpq6DD6cnS4H2jZxcz4E3XmFFfHZthSYw_oA9L_-29vbBPpW3JVGxfw7m_Oydfry-dqnWw-3t5Xy01SCSGHBIHXlWVoy1QpaYXKShAZtwVaYZUqMZVQWZWnuQHIbJ3xurYlF0pygxVjYk4ez71b43TvmzY-qDvT6PVyo6cMBJO5yPLDxD6c2d53PyOGQe-60UcvQXMhBaRScYjU05mqfBeCx_q_loGe9OuoX0_6ddQvfgHBP3nm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353045620</pqid></control><display><type>article</type><title>Analytical models of the wall-pressure spectrum under a turbulent boundary layer with adverse pressure gradient</title><source>Cambridge University Press Journals Complete</source><creator>Grasso, G. ; Jaiswal, P. ; Wu, H. ; Moreau, S. ; Roger, M.</creator><creatorcontrib>Grasso, G. ; Jaiswal, P. ; Wu, H. ; Moreau, S. ; Roger, M.</creatorcontrib><description>This paper presents a comprehensive analytical approach to the modelling of wall-pressure fluctuations under a turbulent boundary layer, unifying and expanding the analytical models that have been proposed over many decades. The Poisson equation governing pressure fluctuations is Fourier transformed in the wavenumber domain to obtain a modified Helmholtz equation, which is solved with a Green’s function technique. The source term of the differential equations is composed of turbulence–mean shear and turbulence–turbulence interaction terms, which are modelled separately within the hypothesis of a joint normal probability distribution of the turbulent field. The functional expression of the turbulence statistics is shown to be the most critical point for a correct representation of the wall-pressure spectrum. The effect of various assumptions on the shape of the longitudinal correlation function of turbulence is assessed in the first place with purely analytical considerations using an idealised flow model. Then, the effect of the hypothesis on the spectral distribution of boundary-layer turbulence on the resulting wall-pressure spectrum is compared with the results of direct numerical simulation computations and pressure measurements on a controlled-diffusion aerofoil. The boundary layer developing over the suction side of this aerofoil in test conditions is characterised by an adverse pressure gradient. The final part of the paper discusses the numerical aspect of wall-pressure spectrum computation. A Monte Carlo technique is used for a fast evaluation of the multi-dimensional integral formulation developed in the theoretical part.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2019.616</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Aerodynamics ; Airfoils ; Boundary layers ; Computation ; Computational fluid dynamics ; Computer simulation ; Critical point ; Differential equations ; Diffusion layers ; Direct numerical simulation ; Distribution ; Fluctuations ; Fluid mechanics ; Fourier transforms ; Helmholtz equations ; Hypotheses ; Mathematical analysis ; Mathematical models ; Mechanics ; Physics ; Poisson equation ; Pressure ; Pressure effects ; Pressure gradients ; Probability distribution ; Probability theory ; Statistical methods ; Suction ; Turbulence ; Turbulent boundary layer ; Wavelengths</subject><ispartof>Journal of fluid mechanics, 2019-10, Vol.877, p.1007-1062</ispartof><rights>2019 Cambridge University Press</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-e02fcd1edb4665d367b0372d9ed3d66be450cd6848a007df72ffdb23652aec113</citedby><cites>FETCH-LOGICAL-c335t-e02fcd1edb4665d367b0372d9ed3d66be450cd6848a007df72ffdb23652aec113</cites><orcidid>0000-0002-5784-9449 ; 0000-0002-9659-5365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03158378$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grasso, G.</creatorcontrib><creatorcontrib>Jaiswal, P.</creatorcontrib><creatorcontrib>Wu, H.</creatorcontrib><creatorcontrib>Moreau, S.</creatorcontrib><creatorcontrib>Roger, M.</creatorcontrib><title>Analytical models of the wall-pressure spectrum under a turbulent boundary layer with adverse pressure gradient</title><title>Journal of fluid mechanics</title><description>This paper presents a comprehensive analytical approach to the modelling of wall-pressure fluctuations under a turbulent boundary layer, unifying and expanding the analytical models that have been proposed over many decades. The Poisson equation governing pressure fluctuations is Fourier transformed in the wavenumber domain to obtain a modified Helmholtz equation, which is solved with a Green’s function technique. The source term of the differential equations is composed of turbulence–mean shear and turbulence–turbulence interaction terms, which are modelled separately within the hypothesis of a joint normal probability distribution of the turbulent field. The functional expression of the turbulence statistics is shown to be the most critical point for a correct representation of the wall-pressure spectrum. The effect of various assumptions on the shape of the longitudinal correlation function of turbulence is assessed in the first place with purely analytical considerations using an idealised flow model. Then, the effect of the hypothesis on the spectral distribution of boundary-layer turbulence on the resulting wall-pressure spectrum is compared with the results of direct numerical simulation computations and pressure measurements on a controlled-diffusion aerofoil. The boundary layer developing over the suction side of this aerofoil in test conditions is characterised by an adverse pressure gradient. The final part of the paper discusses the numerical aspect of wall-pressure spectrum computation. A Monte Carlo technique is used for a fast evaluation of the multi-dimensional integral formulation developed in the theoretical part.</description><subject>Aerodynamics</subject><subject>Airfoils</subject><subject>Boundary layers</subject><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Critical point</subject><subject>Differential equations</subject><subject>Diffusion layers</subject><subject>Direct numerical simulation</subject><subject>Distribution</subject><subject>Fluctuations</subject><subject>Fluid mechanics</subject><subject>Fourier transforms</subject><subject>Helmholtz equations</subject><subject>Hypotheses</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Poisson equation</subject><subject>Pressure</subject><subject>Pressure effects</subject><subject>Pressure gradients</subject><subject>Probability distribution</subject><subject>Probability theory</subject><subject>Statistical methods</subject><subject>Suction</subject><subject>Turbulence</subject><subject>Turbulent boundary layer</subject><subject>Wavelengths</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kNFKwzAUhoMoOKd3PkDAK8HOk6RJ28sx1AkDb_Q6pM2p60jXmrQbe3tTJl4d-M93fg4fIfcMFgxY9ryr2wUHViwUUxdkxlJVJJlK5SWZAXCeMMbhmtyEsANgAopsRrrl3rjT0FTG0baz6ALtajpskR6Nc0nvMYTRIw09VoMfWzruLXpq6DD6cnS4H2jZxcz4E3XmFFfHZthSYw_oA9L_-29vbBPpW3JVGxfw7m_Oydfry-dqnWw-3t5Xy01SCSGHBIHXlWVoy1QpaYXKShAZtwVaYZUqMZVQWZWnuQHIbJ3xurYlF0pygxVjYk4ez71b43TvmzY-qDvT6PVyo6cMBJO5yPLDxD6c2d53PyOGQe-60UcvQXMhBaRScYjU05mqfBeCx_q_loGe9OuoX0_6ddQvfgHBP3nm</recordid><startdate>20191025</startdate><enddate>20191025</enddate><creator>Grasso, G.</creator><creator>Jaiswal, P.</creator><creator>Wu, H.</creator><creator>Moreau, S.</creator><creator>Roger, M.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5784-9449</orcidid><orcidid>https://orcid.org/0000-0002-9659-5365</orcidid></search><sort><creationdate>20191025</creationdate><title>Analytical models of the wall-pressure spectrum under a turbulent boundary layer with adverse pressure gradient</title><author>Grasso, G. ; Jaiswal, P. ; Wu, H. ; Moreau, S. ; Roger, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-e02fcd1edb4665d367b0372d9ed3d66be450cd6848a007df72ffdb23652aec113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerodynamics</topic><topic>Airfoils</topic><topic>Boundary layers</topic><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Critical point</topic><topic>Differential equations</topic><topic>Diffusion layers</topic><topic>Direct numerical simulation</topic><topic>Distribution</topic><topic>Fluctuations</topic><topic>Fluid mechanics</topic><topic>Fourier transforms</topic><topic>Helmholtz equations</topic><topic>Hypotheses</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Poisson equation</topic><topic>Pressure</topic><topic>Pressure effects</topic><topic>Pressure gradients</topic><topic>Probability distribution</topic><topic>Probability theory</topic><topic>Statistical methods</topic><topic>Suction</topic><topic>Turbulence</topic><topic>Turbulent boundary layer</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grasso, G.</creatorcontrib><creatorcontrib>Jaiswal, P.</creatorcontrib><creatorcontrib>Wu, H.</creatorcontrib><creatorcontrib>Moreau, S.</creatorcontrib><creatorcontrib>Roger, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grasso, G.</au><au>Jaiswal, P.</au><au>Wu, H.</au><au>Moreau, S.</au><au>Roger, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical models of the wall-pressure spectrum under a turbulent boundary layer with adverse pressure gradient</atitle><jtitle>Journal of fluid mechanics</jtitle><date>2019-10-25</date><risdate>2019</risdate><volume>877</volume><spage>1007</spage><epage>1062</epage><pages>1007-1062</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>This paper presents a comprehensive analytical approach to the modelling of wall-pressure fluctuations under a turbulent boundary layer, unifying and expanding the analytical models that have been proposed over many decades. The Poisson equation governing pressure fluctuations is Fourier transformed in the wavenumber domain to obtain a modified Helmholtz equation, which is solved with a Green’s function technique. The source term of the differential equations is composed of turbulence–mean shear and turbulence–turbulence interaction terms, which are modelled separately within the hypothesis of a joint normal probability distribution of the turbulent field. The functional expression of the turbulence statistics is shown to be the most critical point for a correct representation of the wall-pressure spectrum. The effect of various assumptions on the shape of the longitudinal correlation function of turbulence is assessed in the first place with purely analytical considerations using an idealised flow model. Then, the effect of the hypothesis on the spectral distribution of boundary-layer turbulence on the resulting wall-pressure spectrum is compared with the results of direct numerical simulation computations and pressure measurements on a controlled-diffusion aerofoil. The boundary layer developing over the suction side of this aerofoil in test conditions is characterised by an adverse pressure gradient. The final part of the paper discusses the numerical aspect of wall-pressure spectrum computation. A Monte Carlo technique is used for a fast evaluation of the multi-dimensional integral formulation developed in the theoretical part.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2019.616</doi><tpages>56</tpages><orcidid>https://orcid.org/0000-0002-5784-9449</orcidid><orcidid>https://orcid.org/0000-0002-9659-5365</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2019-10, Vol.877, p.1007-1062
issn 0022-1120
1469-7645
language eng
recordid cdi_hal_primary_oai_HAL_hal_03158378v1
source Cambridge University Press Journals Complete
subjects Aerodynamics
Airfoils
Boundary layers
Computation
Computational fluid dynamics
Computer simulation
Critical point
Differential equations
Diffusion layers
Direct numerical simulation
Distribution
Fluctuations
Fluid mechanics
Fourier transforms
Helmholtz equations
Hypotheses
Mathematical analysis
Mathematical models
Mechanics
Physics
Poisson equation
Pressure
Pressure effects
Pressure gradients
Probability distribution
Probability theory
Statistical methods
Suction
Turbulence
Turbulent boundary layer
Wavelengths
title Analytical models of the wall-pressure spectrum under a turbulent boundary layer with adverse pressure gradient
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20models%20of%20the%20wall-pressure%20spectrum%20under%20a%20turbulent%20boundary%20layer%20with%20adverse%20pressure%20gradient&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Grasso,%20G.&rft.date=2019-10-25&rft.volume=877&rft.spage=1007&rft.epage=1062&rft.pages=1007-1062&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2019.616&rft_dat=%3Cproquest_hal_p%3E2353045620%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353045620&rft_id=info:pmid/&rfr_iscdi=true