An atomistic approach to self-diffusion in uranium dioxide
The formation and mobility of point defects in UO 2 have been studied within the framework of the Density Functional Theory. The ab initio Projector Augmented Wave method is used to determine the formation and migration energies of defects. The results relative to intrinsic point defect formation en...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2010-05, Vol.400 (2), p.103-106 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106 |
---|---|
container_issue | 2 |
container_start_page | 103 |
container_title | Journal of nuclear materials |
container_volume | 400 |
creator | Dorado, Boris Durinck, Julien Garcia, Philippe Freyss, Michel Bertolus, Marjorie |
description | The formation and mobility of point defects in UO
2 have been studied within the framework of the Density Functional Theory. The
ab initio Projector Augmented Wave method is used to determine the formation and migration energies of defects. The results relative to intrinsic point defect formation energies using the Generalized Gradient Approximation (GGA) and GGA+U approximations for the exchange-correlation interactions are reported and compared to experimental data. The GGA and GGA+U approximations yield different formation energies for both Frenkel pairs and Schottky trios, showing that the 5
f electron correlations have a strong influence on the defect formation energies. Using GGA, various migration mechanisms were investigated for oxygen and uranium defects. For oxygen defects, the calculations show that both a vacancy and an indirect interstitial mechanism have the lowest associated migration energies, 1.2 and 1.1
eV respectively. As regards uranium defects, a vacancy mechanism appears energetically more favourable with a migration energy of 4.4
eV, confirming that oxygen atoms are much more mobile in UO
2 than uranium atoms. Those results are discussed in the light of experimentally determined activation energies for diffusion. |
doi_str_mv | 10.1016/j.jnucmat.2010.02.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03155515v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311510000760</els_id><sourcerecordid>753753379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-bb96444a31da37f8389f27aef5a86c5848402e67f66d385edfff6ec6d6e045bb3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9-grAXEQ9bJ8kmm_UiRfyCghc9hzSZYMp2Uze7Rf-9KS29CgMDwzMzvA8hVxSmFKi8W06X3WhXZpgyyDNgU6D1EZlQVfOyUgyOyQSAsZJTKk7JWUpLABANiAm5n3WFGeIqpCHYwqzXfTT2qxhikbD1pQvejynErghdMfamC-OqcCH-BIcX5MSbNuHlvp-Tz-enj8fXcv7-8vY4m5e2AjGUi0Ujq6oynDrDa6-4ajyrDXphlLRCVaoChrL2UjquBDrvvUQrnUSoxGLBz8nt7u6XafW6DyvT_-pogn6dzfV2BpwKIajY0Mze7Nic43vENOiczGLbmg7jmHQteC5eN5kUO9L2MaUe_eE0Bb3Vqpd6r1VvtWpgOmvNe9f7DyZZ0_rsxIZ0WGZMgYAaMvew4zCr2QTsdbIBO4su9GgH7WL459MfgxOPWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753753379</pqid></control><display><type>article</type><title>An atomistic approach to self-diffusion in uranium dioxide</title><source>Elsevier ScienceDirect Journals</source><creator>Dorado, Boris ; Durinck, Julien ; Garcia, Philippe ; Freyss, Michel ; Bertolus, Marjorie</creator><creatorcontrib>Dorado, Boris ; Durinck, Julien ; Garcia, Philippe ; Freyss, Michel ; Bertolus, Marjorie</creatorcontrib><description>The formation and mobility of point defects in UO
2 have been studied within the framework of the Density Functional Theory. The
ab initio Projector Augmented Wave method is used to determine the formation and migration energies of defects. The results relative to intrinsic point defect formation energies using the Generalized Gradient Approximation (GGA) and GGA+U approximations for the exchange-correlation interactions are reported and compared to experimental data. The GGA and GGA+U approximations yield different formation energies for both Frenkel pairs and Schottky trios, showing that the 5
f electron correlations have a strong influence on the defect formation energies. Using GGA, various migration mechanisms were investigated for oxygen and uranium defects. For oxygen defects, the calculations show that both a vacancy and an indirect interstitial mechanism have the lowest associated migration energies, 1.2 and 1.1
eV respectively. As regards uranium defects, a vacancy mechanism appears energetically more favourable with a migration energy of 4.4
eV, confirming that oxygen atoms are much more mobile in UO
2 than uranium atoms. Those results are discussed in the light of experimentally determined activation energies for diffusion.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2010.02.017</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Approximation ; Condensed Matter ; Controled nuclear fusion plants ; Defects ; Energy ; Energy (nuclear) ; Energy of formation ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Materials Science ; Mathematical analysis ; Migration ; Nuclear fuels ; Physics ; Point defects ; Preparation and processing of nuclear fuels ; Uranium</subject><ispartof>Journal of nuclear materials, 2010-05, Vol.400 (2), p.103-106</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-bb96444a31da37f8389f27aef5a86c5848402e67f66d385edfff6ec6d6e045bb3</citedby><cites>FETCH-LOGICAL-c405t-bb96444a31da37f8389f27aef5a86c5848402e67f66d385edfff6ec6d6e045bb3</cites><orcidid>0000-0002-2848-4399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311510000760$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22805070$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03155515$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dorado, Boris</creatorcontrib><creatorcontrib>Durinck, Julien</creatorcontrib><creatorcontrib>Garcia, Philippe</creatorcontrib><creatorcontrib>Freyss, Michel</creatorcontrib><creatorcontrib>Bertolus, Marjorie</creatorcontrib><title>An atomistic approach to self-diffusion in uranium dioxide</title><title>Journal of nuclear materials</title><description>The formation and mobility of point defects in UO
2 have been studied within the framework of the Density Functional Theory. The
ab initio Projector Augmented Wave method is used to determine the formation and migration energies of defects. The results relative to intrinsic point defect formation energies using the Generalized Gradient Approximation (GGA) and GGA+U approximations for the exchange-correlation interactions are reported and compared to experimental data. The GGA and GGA+U approximations yield different formation energies for both Frenkel pairs and Schottky trios, showing that the 5
f electron correlations have a strong influence on the defect formation energies. Using GGA, various migration mechanisms were investigated for oxygen and uranium defects. For oxygen defects, the calculations show that both a vacancy and an indirect interstitial mechanism have the lowest associated migration energies, 1.2 and 1.1
eV respectively. As regards uranium defects, a vacancy mechanism appears energetically more favourable with a migration energy of 4.4
eV, confirming that oxygen atoms are much more mobile in UO
2 than uranium atoms. Those results are discussed in the light of experimentally determined activation energies for diffusion.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Condensed Matter</subject><subject>Controled nuclear fusion plants</subject><subject>Defects</subject><subject>Energy</subject><subject>Energy (nuclear)</subject><subject>Energy of formation</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Migration</subject><subject>Nuclear fuels</subject><subject>Physics</subject><subject>Point defects</subject><subject>Preparation and processing of nuclear fuels</subject><subject>Uranium</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD9-grAXEQ9bJ8kmm_UiRfyCghc9hzSZYMp2Uze7Rf-9KS29CgMDwzMzvA8hVxSmFKi8W06X3WhXZpgyyDNgU6D1EZlQVfOyUgyOyQSAsZJTKk7JWUpLABANiAm5n3WFGeIqpCHYwqzXfTT2qxhikbD1pQvejynErghdMfamC-OqcCH-BIcX5MSbNuHlvp-Tz-enj8fXcv7-8vY4m5e2AjGUi0Ujq6oynDrDa6-4ajyrDXphlLRCVaoChrL2UjquBDrvvUQrnUSoxGLBz8nt7u6XafW6DyvT_-pogn6dzfV2BpwKIajY0Mze7Nic43vENOiczGLbmg7jmHQteC5eN5kUO9L2MaUe_eE0Bb3Vqpd6r1VvtWpgOmvNe9f7DyZZ0_rsxIZ0WGZMgYAaMvew4zCr2QTsdbIBO4su9GgH7WL459MfgxOPWQ</recordid><startdate>20100515</startdate><enddate>20100515</enddate><creator>Dorado, Boris</creator><creator>Durinck, Julien</creator><creator>Garcia, Philippe</creator><creator>Freyss, Michel</creator><creator>Bertolus, Marjorie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2848-4399</orcidid></search><sort><creationdate>20100515</creationdate><title>An atomistic approach to self-diffusion in uranium dioxide</title><author>Dorado, Boris ; Durinck, Julien ; Garcia, Philippe ; Freyss, Michel ; Bertolus, Marjorie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-bb96444a31da37f8389f27aef5a86c5848402e67f66d385edfff6ec6d6e045bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Condensed Matter</topic><topic>Controled nuclear fusion plants</topic><topic>Defects</topic><topic>Energy</topic><topic>Energy (nuclear)</topic><topic>Energy of formation</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Migration</topic><topic>Nuclear fuels</topic><topic>Physics</topic><topic>Point defects</topic><topic>Preparation and processing of nuclear fuels</topic><topic>Uranium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorado, Boris</creatorcontrib><creatorcontrib>Durinck, Julien</creatorcontrib><creatorcontrib>Garcia, Philippe</creatorcontrib><creatorcontrib>Freyss, Michel</creatorcontrib><creatorcontrib>Bertolus, Marjorie</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorado, Boris</au><au>Durinck, Julien</au><au>Garcia, Philippe</au><au>Freyss, Michel</au><au>Bertolus, Marjorie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An atomistic approach to self-diffusion in uranium dioxide</atitle><jtitle>Journal of nuclear materials</jtitle><date>2010-05-15</date><risdate>2010</risdate><volume>400</volume><issue>2</issue><spage>103</spage><epage>106</epage><pages>103-106</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>The formation and mobility of point defects in UO
2 have been studied within the framework of the Density Functional Theory. The
ab initio Projector Augmented Wave method is used to determine the formation and migration energies of defects. The results relative to intrinsic point defect formation energies using the Generalized Gradient Approximation (GGA) and GGA+U approximations for the exchange-correlation interactions are reported and compared to experimental data. The GGA and GGA+U approximations yield different formation energies for both Frenkel pairs and Schottky trios, showing that the 5
f electron correlations have a strong influence on the defect formation energies. Using GGA, various migration mechanisms were investigated for oxygen and uranium defects. For oxygen defects, the calculations show that both a vacancy and an indirect interstitial mechanism have the lowest associated migration energies, 1.2 and 1.1
eV respectively. As regards uranium defects, a vacancy mechanism appears energetically more favourable with a migration energy of 4.4
eV, confirming that oxygen atoms are much more mobile in UO
2 than uranium atoms. Those results are discussed in the light of experimentally determined activation energies for diffusion.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2010.02.017</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-2848-4399</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2010-05, Vol.400 (2), p.103-106 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03155515v1 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Approximation Condensed Matter Controled nuclear fusion plants Defects Energy Energy (nuclear) Energy of formation Energy. Thermal use of fuels Exact sciences and technology Fission nuclear power plants Fuels Installations for energy generation and conversion: thermal and electrical energy Materials Science Mathematical analysis Migration Nuclear fuels Physics Point defects Preparation and processing of nuclear fuels Uranium |
title | An atomistic approach to self-diffusion in uranium dioxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20atomistic%20approach%20to%20self-diffusion%20in%20uranium%20dioxide&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Dorado,%20Boris&rft.date=2010-05-15&rft.volume=400&rft.issue=2&rft.spage=103&rft.epage=106&rft.pages=103-106&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2010.02.017&rft_dat=%3Cproquest_hal_p%3E753753379%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753753379&rft_id=info:pmid/&rft_els_id=S0022311510000760&rfr_iscdi=true |