An atomistic approach to self-diffusion in uranium dioxide

The formation and mobility of point defects in UO 2 have been studied within the framework of the Density Functional Theory. The ab initio Projector Augmented Wave method is used to determine the formation and migration energies of defects. The results relative to intrinsic point defect formation en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2010-05, Vol.400 (2), p.103-106
Hauptverfasser: Dorado, Boris, Durinck, Julien, Garcia, Philippe, Freyss, Michel, Bertolus, Marjorie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106
container_issue 2
container_start_page 103
container_title Journal of nuclear materials
container_volume 400
creator Dorado, Boris
Durinck, Julien
Garcia, Philippe
Freyss, Michel
Bertolus, Marjorie
description The formation and mobility of point defects in UO 2 have been studied within the framework of the Density Functional Theory. The ab initio Projector Augmented Wave method is used to determine the formation and migration energies of defects. The results relative to intrinsic point defect formation energies using the Generalized Gradient Approximation (GGA) and GGA+U approximations for the exchange-correlation interactions are reported and compared to experimental data. The GGA and GGA+U approximations yield different formation energies for both Frenkel pairs and Schottky trios, showing that the 5 f electron correlations have a strong influence on the defect formation energies. Using GGA, various migration mechanisms were investigated for oxygen and uranium defects. For oxygen defects, the calculations show that both a vacancy and an indirect interstitial mechanism have the lowest associated migration energies, 1.2 and 1.1 eV respectively. As regards uranium defects, a vacancy mechanism appears energetically more favourable with a migration energy of 4.4 eV, confirming that oxygen atoms are much more mobile in UO 2 than uranium atoms. Those results are discussed in the light of experimentally determined activation energies for diffusion.
doi_str_mv 10.1016/j.jnucmat.2010.02.017
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03155515v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311510000760</els_id><sourcerecordid>753753379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-bb96444a31da37f8389f27aef5a86c5848402e67f66d385edfff6ec6d6e045bb3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9-grAXEQ9bJ8kmm_UiRfyCghc9hzSZYMp2Uze7Rf-9KS29CgMDwzMzvA8hVxSmFKi8W06X3WhXZpgyyDNgU6D1EZlQVfOyUgyOyQSAsZJTKk7JWUpLABANiAm5n3WFGeIqpCHYwqzXfTT2qxhikbD1pQvejynErghdMfamC-OqcCH-BIcX5MSbNuHlvp-Tz-enj8fXcv7-8vY4m5e2AjGUi0Ujq6oynDrDa6-4ajyrDXphlLRCVaoChrL2UjquBDrvvUQrnUSoxGLBz8nt7u6XafW6DyvT_-pogn6dzfV2BpwKIajY0Mze7Nic43vENOiczGLbmg7jmHQteC5eN5kUO9L2MaUe_eE0Bb3Vqpd6r1VvtWpgOmvNe9f7DyZZ0_rsxIZ0WGZMgYAaMvew4zCr2QTsdbIBO4su9GgH7WL459MfgxOPWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753753379</pqid></control><display><type>article</type><title>An atomistic approach to self-diffusion in uranium dioxide</title><source>Elsevier ScienceDirect Journals</source><creator>Dorado, Boris ; Durinck, Julien ; Garcia, Philippe ; Freyss, Michel ; Bertolus, Marjorie</creator><creatorcontrib>Dorado, Boris ; Durinck, Julien ; Garcia, Philippe ; Freyss, Michel ; Bertolus, Marjorie</creatorcontrib><description>The formation and mobility of point defects in UO 2 have been studied within the framework of the Density Functional Theory. The ab initio Projector Augmented Wave method is used to determine the formation and migration energies of defects. The results relative to intrinsic point defect formation energies using the Generalized Gradient Approximation (GGA) and GGA+U approximations for the exchange-correlation interactions are reported and compared to experimental data. The GGA and GGA+U approximations yield different formation energies for both Frenkel pairs and Schottky trios, showing that the 5 f electron correlations have a strong influence on the defect formation energies. Using GGA, various migration mechanisms were investigated for oxygen and uranium defects. For oxygen defects, the calculations show that both a vacancy and an indirect interstitial mechanism have the lowest associated migration energies, 1.2 and 1.1 eV respectively. As regards uranium defects, a vacancy mechanism appears energetically more favourable with a migration energy of 4.4 eV, confirming that oxygen atoms are much more mobile in UO 2 than uranium atoms. Those results are discussed in the light of experimentally determined activation energies for diffusion.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2010.02.017</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Approximation ; Condensed Matter ; Controled nuclear fusion plants ; Defects ; Energy ; Energy (nuclear) ; Energy of formation ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Materials Science ; Mathematical analysis ; Migration ; Nuclear fuels ; Physics ; Point defects ; Preparation and processing of nuclear fuels ; Uranium</subject><ispartof>Journal of nuclear materials, 2010-05, Vol.400 (2), p.103-106</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-bb96444a31da37f8389f27aef5a86c5848402e67f66d385edfff6ec6d6e045bb3</citedby><cites>FETCH-LOGICAL-c405t-bb96444a31da37f8389f27aef5a86c5848402e67f66d385edfff6ec6d6e045bb3</cites><orcidid>0000-0002-2848-4399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311510000760$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22805070$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03155515$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dorado, Boris</creatorcontrib><creatorcontrib>Durinck, Julien</creatorcontrib><creatorcontrib>Garcia, Philippe</creatorcontrib><creatorcontrib>Freyss, Michel</creatorcontrib><creatorcontrib>Bertolus, Marjorie</creatorcontrib><title>An atomistic approach to self-diffusion in uranium dioxide</title><title>Journal of nuclear materials</title><description>The formation and mobility of point defects in UO 2 have been studied within the framework of the Density Functional Theory. The ab initio Projector Augmented Wave method is used to determine the formation and migration energies of defects. The results relative to intrinsic point defect formation energies using the Generalized Gradient Approximation (GGA) and GGA+U approximations for the exchange-correlation interactions are reported and compared to experimental data. The GGA and GGA+U approximations yield different formation energies for both Frenkel pairs and Schottky trios, showing that the 5 f electron correlations have a strong influence on the defect formation energies. Using GGA, various migration mechanisms were investigated for oxygen and uranium defects. For oxygen defects, the calculations show that both a vacancy and an indirect interstitial mechanism have the lowest associated migration energies, 1.2 and 1.1 eV respectively. As regards uranium defects, a vacancy mechanism appears energetically more favourable with a migration energy of 4.4 eV, confirming that oxygen atoms are much more mobile in UO 2 than uranium atoms. Those results are discussed in the light of experimentally determined activation energies for diffusion.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Condensed Matter</subject><subject>Controled nuclear fusion plants</subject><subject>Defects</subject><subject>Energy</subject><subject>Energy (nuclear)</subject><subject>Energy of formation</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Migration</subject><subject>Nuclear fuels</subject><subject>Physics</subject><subject>Point defects</subject><subject>Preparation and processing of nuclear fuels</subject><subject>Uranium</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD9-grAXEQ9bJ8kmm_UiRfyCghc9hzSZYMp2Uze7Rf-9KS29CgMDwzMzvA8hVxSmFKi8W06X3WhXZpgyyDNgU6D1EZlQVfOyUgyOyQSAsZJTKk7JWUpLABANiAm5n3WFGeIqpCHYwqzXfTT2qxhikbD1pQvejynErghdMfamC-OqcCH-BIcX5MSbNuHlvp-Tz-enj8fXcv7-8vY4m5e2AjGUi0Ujq6oynDrDa6-4ajyrDXphlLRCVaoChrL2UjquBDrvvUQrnUSoxGLBz8nt7u6XafW6DyvT_-pogn6dzfV2BpwKIajY0Mze7Nic43vENOiczGLbmg7jmHQteC5eN5kUO9L2MaUe_eE0Bb3Vqpd6r1VvtWpgOmvNe9f7DyZZ0_rsxIZ0WGZMgYAaMvew4zCr2QTsdbIBO4su9GgH7WL459MfgxOPWQ</recordid><startdate>20100515</startdate><enddate>20100515</enddate><creator>Dorado, Boris</creator><creator>Durinck, Julien</creator><creator>Garcia, Philippe</creator><creator>Freyss, Michel</creator><creator>Bertolus, Marjorie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2848-4399</orcidid></search><sort><creationdate>20100515</creationdate><title>An atomistic approach to self-diffusion in uranium dioxide</title><author>Dorado, Boris ; Durinck, Julien ; Garcia, Philippe ; Freyss, Michel ; Bertolus, Marjorie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-bb96444a31da37f8389f27aef5a86c5848402e67f66d385edfff6ec6d6e045bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Condensed Matter</topic><topic>Controled nuclear fusion plants</topic><topic>Defects</topic><topic>Energy</topic><topic>Energy (nuclear)</topic><topic>Energy of formation</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Migration</topic><topic>Nuclear fuels</topic><topic>Physics</topic><topic>Point defects</topic><topic>Preparation and processing of nuclear fuels</topic><topic>Uranium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorado, Boris</creatorcontrib><creatorcontrib>Durinck, Julien</creatorcontrib><creatorcontrib>Garcia, Philippe</creatorcontrib><creatorcontrib>Freyss, Michel</creatorcontrib><creatorcontrib>Bertolus, Marjorie</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorado, Boris</au><au>Durinck, Julien</au><au>Garcia, Philippe</au><au>Freyss, Michel</au><au>Bertolus, Marjorie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An atomistic approach to self-diffusion in uranium dioxide</atitle><jtitle>Journal of nuclear materials</jtitle><date>2010-05-15</date><risdate>2010</risdate><volume>400</volume><issue>2</issue><spage>103</spage><epage>106</epage><pages>103-106</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>The formation and mobility of point defects in UO 2 have been studied within the framework of the Density Functional Theory. The ab initio Projector Augmented Wave method is used to determine the formation and migration energies of defects. The results relative to intrinsic point defect formation energies using the Generalized Gradient Approximation (GGA) and GGA+U approximations for the exchange-correlation interactions are reported and compared to experimental data. The GGA and GGA+U approximations yield different formation energies for both Frenkel pairs and Schottky trios, showing that the 5 f electron correlations have a strong influence on the defect formation energies. Using GGA, various migration mechanisms were investigated for oxygen and uranium defects. For oxygen defects, the calculations show that both a vacancy and an indirect interstitial mechanism have the lowest associated migration energies, 1.2 and 1.1 eV respectively. As regards uranium defects, a vacancy mechanism appears energetically more favourable with a migration energy of 4.4 eV, confirming that oxygen atoms are much more mobile in UO 2 than uranium atoms. Those results are discussed in the light of experimentally determined activation energies for diffusion.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2010.02.017</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-2848-4399</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2010-05, Vol.400 (2), p.103-106
issn 0022-3115
1873-4820
language eng
recordid cdi_hal_primary_oai_HAL_hal_03155515v1
source Elsevier ScienceDirect Journals
subjects Applied sciences
Approximation
Condensed Matter
Controled nuclear fusion plants
Defects
Energy
Energy (nuclear)
Energy of formation
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Fuels
Installations for energy generation and conversion: thermal and electrical energy
Materials Science
Mathematical analysis
Migration
Nuclear fuels
Physics
Point defects
Preparation and processing of nuclear fuels
Uranium
title An atomistic approach to self-diffusion in uranium dioxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20atomistic%20approach%20to%20self-diffusion%20in%20uranium%20dioxide&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Dorado,%20Boris&rft.date=2010-05-15&rft.volume=400&rft.issue=2&rft.spage=103&rft.epage=106&rft.pages=103-106&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2010.02.017&rft_dat=%3Cproquest_hal_p%3E753753379%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753753379&rft_id=info:pmid/&rft_els_id=S0022311510000760&rfr_iscdi=true