CFD modeling of mass transfer in Gas-Liquid-Solid catalytic reactors

[Display omitted] •This work investigate mass transfer in a heterogeneous catalytic hydrogenation for gas–liquid-solid reactors, by using CFD.•CFD is used for predicting hydrodynamic and catalyst geometry effect on mass transfer for three different reactors geometry.•CFD-VOF model has been validated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2021-04, Vol.233, p.116378, Article 116378
Hauptverfasser: Bouras, Hanane, Haroun, Yacine, Philippe, Régis, Augier, Frédéric, Fongarland, Pascal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 116378
container_title Chemical engineering science
container_volume 233
creator Bouras, Hanane
Haroun, Yacine
Philippe, Régis
Augier, Frédéric
Fongarland, Pascal
description [Display omitted] •This work investigate mass transfer in a heterogeneous catalytic hydrogenation for gas–liquid-solid reactors, by using CFD.•CFD is used for predicting hydrodynamic and catalyst geometry effect on mass transfer for three different reactors geometry.•CFD-VOF model has been validated with analytical solutions and experimental data.•This work shows that the film model is applicable in pure diffusion regimes and the resistances-in-series model is not applicable when the mass transfer occurs without bulk.•Predictive model is proposed for mass transfer in a micro-structured reactor and vertical spherical beads string. This work investigates Gas-Liquid-Solid mass transfer coupled to heterogeneous catalytic reaction using Computational Fluid Dynamics (CFD). The numerical model is based on the Volume-of-Fluid (VOF) approach, coupled with a convection–diffusion equation for mass transfer resolution. First, the numerical method is validated on a falling liquid film over a semi-infinite planar surface. Then, a micro-structured reactor with α-methylstyrene hydrogenation is studied. A good agreement is found between experimental data of Tourvieille et al. (2013) and simulation results. Afterwards, a vertical spherical beads string is investigated. Convective transport by transversal velocities is identified as an important contributor to the overall Gas-Liquid-Solid mass transfer. While the film model is applicable in pure diffusion regimes, the resistances-in-series model is not relevant and over-estimates the real mass transfer by nearly 30% when mass transfer occurs in liquid film flow without bulk. The present work shows how CFD can be an effective tool for predicting hydrodynamic and catalyst geometry effect on mass transfer in Gas-Liquid-Solid reactors.
doi_str_mv 10.1016/j.ces.2020.116378
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03150137v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250920309106</els_id><sourcerecordid>oai_HAL_hal_03150137v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-c1a3a0a09a457ef440ebb53d38c004849a5e42c835dcc77cf7a3d2692e742afa3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwANxy5dDiNOnSitO0sQ2pEgfgHHlOCpm6FpIyaW9PpyKOnKzf8mfZH2O3AlIBYna_S8nFNINsyGImdXHGJqLQMlEK8nM2AYAyyXIoL9lVjLshai1gwpaL1ZLvO-sa377zruZ7jJH3AdtYu8B9y9cYk8p_fXubvHSNt5ywx-bYe-LBIfVdiNfsosYmupvfOmVvq8fXxSapntdPi3mVkNSqT0igREAoUeXa1cNlbrvNpZUFAahClZg7lVEhc0ukNdUapc1mZea0yrBGOWV3494PbMxn8HsMR9OhN5t5ZU49kCIHIfVBDLNinKXQxRhc_QcIMCdlZmcGZeakzIzKBuZhZNzwxMG7YCJ515KzPjjqje38P_QPt75yiw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CFD modeling of mass transfer in Gas-Liquid-Solid catalytic reactors</title><source>Elsevier ScienceDirect Journals</source><creator>Bouras, Hanane ; Haroun, Yacine ; Philippe, Régis ; Augier, Frédéric ; Fongarland, Pascal</creator><creatorcontrib>Bouras, Hanane ; Haroun, Yacine ; Philippe, Régis ; Augier, Frédéric ; Fongarland, Pascal</creatorcontrib><description>[Display omitted] •This work investigate mass transfer in a heterogeneous catalytic hydrogenation for gas–liquid-solid reactors, by using CFD.•CFD is used for predicting hydrodynamic and catalyst geometry effect on mass transfer for three different reactors geometry.•CFD-VOF model has been validated with analytical solutions and experimental data.•This work shows that the film model is applicable in pure diffusion regimes and the resistances-in-series model is not applicable when the mass transfer occurs without bulk.•Predictive model is proposed for mass transfer in a micro-structured reactor and vertical spherical beads string. This work investigates Gas-Liquid-Solid mass transfer coupled to heterogeneous catalytic reaction using Computational Fluid Dynamics (CFD). The numerical model is based on the Volume-of-Fluid (VOF) approach, coupled with a convection–diffusion equation for mass transfer resolution. First, the numerical method is validated on a falling liquid film over a semi-infinite planar surface. Then, a micro-structured reactor with α-methylstyrene hydrogenation is studied. A good agreement is found between experimental data of Tourvieille et al. (2013) and simulation results. Afterwards, a vertical spherical beads string is investigated. Convective transport by transversal velocities is identified as an important contributor to the overall Gas-Liquid-Solid mass transfer. While the film model is applicable in pure diffusion regimes, the resistances-in-series model is not relevant and over-estimates the real mass transfer by nearly 30% when mass transfer occurs in liquid film flow without bulk. The present work shows how CFD can be an effective tool for predicting hydrodynamic and catalyst geometry effect on mass transfer in Gas-Liquid-Solid reactors.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2020.116378</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Catalytic reaction ; CFD ; Chemical Sciences ; Environmental Sciences ; Film model ; Gas-Liquid-Solid reactors ; Mass transfer ; Volume of fluid method</subject><ispartof>Chemical engineering science, 2021-04, Vol.233, p.116378, Article 116378</ispartof><rights>2020 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-c1a3a0a09a457ef440ebb53d38c004849a5e42c835dcc77cf7a3d2692e742afa3</citedby><cites>FETCH-LOGICAL-c374t-c1a3a0a09a457ef440ebb53d38c004849a5e42c835dcc77cf7a3d2692e742afa3</cites><orcidid>0000-0003-1640-4360 ; 0000-0001-5228-9510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0009250920309106$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://ifp.hal.science/hal-03150137$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouras, Hanane</creatorcontrib><creatorcontrib>Haroun, Yacine</creatorcontrib><creatorcontrib>Philippe, Régis</creatorcontrib><creatorcontrib>Augier, Frédéric</creatorcontrib><creatorcontrib>Fongarland, Pascal</creatorcontrib><title>CFD modeling of mass transfer in Gas-Liquid-Solid catalytic reactors</title><title>Chemical engineering science</title><description>[Display omitted] •This work investigate mass transfer in a heterogeneous catalytic hydrogenation for gas–liquid-solid reactors, by using CFD.•CFD is used for predicting hydrodynamic and catalyst geometry effect on mass transfer for three different reactors geometry.•CFD-VOF model has been validated with analytical solutions and experimental data.•This work shows that the film model is applicable in pure diffusion regimes and the resistances-in-series model is not applicable when the mass transfer occurs without bulk.•Predictive model is proposed for mass transfer in a micro-structured reactor and vertical spherical beads string. This work investigates Gas-Liquid-Solid mass transfer coupled to heterogeneous catalytic reaction using Computational Fluid Dynamics (CFD). The numerical model is based on the Volume-of-Fluid (VOF) approach, coupled with a convection–diffusion equation for mass transfer resolution. First, the numerical method is validated on a falling liquid film over a semi-infinite planar surface. Then, a micro-structured reactor with α-methylstyrene hydrogenation is studied. A good agreement is found between experimental data of Tourvieille et al. (2013) and simulation results. Afterwards, a vertical spherical beads string is investigated. Convective transport by transversal velocities is identified as an important contributor to the overall Gas-Liquid-Solid mass transfer. While the film model is applicable in pure diffusion regimes, the resistances-in-series model is not relevant and over-estimates the real mass transfer by nearly 30% when mass transfer occurs in liquid film flow without bulk. The present work shows how CFD can be an effective tool for predicting hydrodynamic and catalyst geometry effect on mass transfer in Gas-Liquid-Solid reactors.</description><subject>Catalytic reaction</subject><subject>CFD</subject><subject>Chemical Sciences</subject><subject>Environmental Sciences</subject><subject>Film model</subject><subject>Gas-Liquid-Solid reactors</subject><subject>Mass transfer</subject><subject>Volume of fluid method</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmPwANxy5dDiNOnSitO0sQ2pEgfgHHlOCpm6FpIyaW9PpyKOnKzf8mfZH2O3AlIBYna_S8nFNINsyGImdXHGJqLQMlEK8nM2AYAyyXIoL9lVjLshai1gwpaL1ZLvO-sa377zruZ7jJH3AdtYu8B9y9cYk8p_fXubvHSNt5ywx-bYe-LBIfVdiNfsosYmupvfOmVvq8fXxSapntdPi3mVkNSqT0igREAoUeXa1cNlbrvNpZUFAahClZg7lVEhc0ukNdUapc1mZea0yrBGOWV3494PbMxn8HsMR9OhN5t5ZU49kCIHIfVBDLNinKXQxRhc_QcIMCdlZmcGZeakzIzKBuZhZNzwxMG7YCJ515KzPjjqje38P_QPt75yiw</recordid><startdate>20210406</startdate><enddate>20210406</enddate><creator>Bouras, Hanane</creator><creator>Haroun, Yacine</creator><creator>Philippe, Régis</creator><creator>Augier, Frédéric</creator><creator>Fongarland, Pascal</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1640-4360</orcidid><orcidid>https://orcid.org/0000-0001-5228-9510</orcidid></search><sort><creationdate>20210406</creationdate><title>CFD modeling of mass transfer in Gas-Liquid-Solid catalytic reactors</title><author>Bouras, Hanane ; Haroun, Yacine ; Philippe, Régis ; Augier, Frédéric ; Fongarland, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-c1a3a0a09a457ef440ebb53d38c004849a5e42c835dcc77cf7a3d2692e742afa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalytic reaction</topic><topic>CFD</topic><topic>Chemical Sciences</topic><topic>Environmental Sciences</topic><topic>Film model</topic><topic>Gas-Liquid-Solid reactors</topic><topic>Mass transfer</topic><topic>Volume of fluid method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouras, Hanane</creatorcontrib><creatorcontrib>Haroun, Yacine</creatorcontrib><creatorcontrib>Philippe, Régis</creatorcontrib><creatorcontrib>Augier, Frédéric</creatorcontrib><creatorcontrib>Fongarland, Pascal</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouras, Hanane</au><au>Haroun, Yacine</au><au>Philippe, Régis</au><au>Augier, Frédéric</au><au>Fongarland, Pascal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD modeling of mass transfer in Gas-Liquid-Solid catalytic reactors</atitle><jtitle>Chemical engineering science</jtitle><date>2021-04-06</date><risdate>2021</risdate><volume>233</volume><spage>116378</spage><pages>116378-</pages><artnum>116378</artnum><issn>0009-2509</issn><eissn>1873-4405</eissn><abstract>[Display omitted] •This work investigate mass transfer in a heterogeneous catalytic hydrogenation for gas–liquid-solid reactors, by using CFD.•CFD is used for predicting hydrodynamic and catalyst geometry effect on mass transfer for three different reactors geometry.•CFD-VOF model has been validated with analytical solutions and experimental data.•This work shows that the film model is applicable in pure diffusion regimes and the resistances-in-series model is not applicable when the mass transfer occurs without bulk.•Predictive model is proposed for mass transfer in a micro-structured reactor and vertical spherical beads string. This work investigates Gas-Liquid-Solid mass transfer coupled to heterogeneous catalytic reaction using Computational Fluid Dynamics (CFD). The numerical model is based on the Volume-of-Fluid (VOF) approach, coupled with a convection–diffusion equation for mass transfer resolution. First, the numerical method is validated on a falling liquid film over a semi-infinite planar surface. Then, a micro-structured reactor with α-methylstyrene hydrogenation is studied. A good agreement is found between experimental data of Tourvieille et al. (2013) and simulation results. Afterwards, a vertical spherical beads string is investigated. Convective transport by transversal velocities is identified as an important contributor to the overall Gas-Liquid-Solid mass transfer. While the film model is applicable in pure diffusion regimes, the resistances-in-series model is not relevant and over-estimates the real mass transfer by nearly 30% when mass transfer occurs in liquid film flow without bulk. The present work shows how CFD can be an effective tool for predicting hydrodynamic and catalyst geometry effect on mass transfer in Gas-Liquid-Solid reactors.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2020.116378</doi><orcidid>https://orcid.org/0000-0003-1640-4360</orcidid><orcidid>https://orcid.org/0000-0001-5228-9510</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2021-04, Vol.233, p.116378, Article 116378
issn 0009-2509
1873-4405
language eng
recordid cdi_hal_primary_oai_HAL_hal_03150137v1
source Elsevier ScienceDirect Journals
subjects Catalytic reaction
CFD
Chemical Sciences
Environmental Sciences
Film model
Gas-Liquid-Solid reactors
Mass transfer
Volume of fluid method
title CFD modeling of mass transfer in Gas-Liquid-Solid catalytic reactors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20modeling%20of%20mass%20transfer%20in%20Gas-Liquid-Solid%20catalytic%20reactors&rft.jtitle=Chemical%20engineering%20science&rft.au=Bouras,%20Hanane&rft.date=2021-04-06&rft.volume=233&rft.spage=116378&rft.pages=116378-&rft.artnum=116378&rft.issn=0009-2509&rft.eissn=1873-4405&rft_id=info:doi/10.1016/j.ces.2020.116378&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03150137v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0009250920309106&rfr_iscdi=true