Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3−) based on an artificial neural network diabatic potential model

The photodetachment spectrum of the nitrate anion (NO3−) is simulated from first principles using wavepacket quantum dynamics propagation and a newly developed accurate full-dimensional fully coupled five state diabatic potential model. This model utilizes the recently proposed complete nuclear perm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2021-02, Vol.154 (8), p.084302-084302
Hauptverfasser: Viel, Alexandra, Williams, David M. G., Eisfeld, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 084302
container_issue 8
container_start_page 084302
container_title The Journal of chemical physics
container_volume 154
creator Viel, Alexandra
Williams, David M. G.
Eisfeld, Wolfgang
description The photodetachment spectrum of the nitrate anion (NO3−) is simulated from first principles using wavepacket quantum dynamics propagation and a newly developed accurate full-dimensional fully coupled five state diabatic potential model. This model utilizes the recently proposed complete nuclear permutation inversion invariant artificial neural network diabatization technique [D. M. G. Williams and W. Eisfeld, J. Phys. Chem. A 124, 7608 (2020)]. The quantum dynamics simulations are designed such that temperature effects and the impact of near threshold detachment are taken into account. Thus, the two available experiments at high temperature and at cryogenic temperature using the slow electron velocity-map imaging technique can be reproduced in very good agreement. These results clearly show the relevance of hot bands and vibronic coupling between the X̃ 2A2′ ground state and the B̃ 2E′ excited state of the neutral radical. This together with the recent experiment at low temperature gives further support for the proper assignment of the ν3 fundamental, which has been debated for many years. An assignment of a not yet discussed hot band line is also proposed.
doi_str_mv 10.1063/5.0039503
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03149863v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492432228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-efd85e31c2a25ddf5108a0ebff6f4c37dc34dcbee184947daa148962ed9773703</originalsourceid><addsrcrecordid>eNp9kdtqFTEUhoModrd64QtIwJtWmJrTnC43xVphY2_0OqzJgZ06M5kmmUrfwGvfwFfzScx0b3dBQQissPKt_0_yI_SKknNKKv6uPCeEtyXhT9CKkqYt6qolT9GKEEaLtiLVETqO8YYQQmsmnqMjzive5u0K_VwrNQdIBt_OMKZ5wPp-hMGpiKMb5h6S8yP2FqetwdPWJ69NArUdzJhwnIxKIc_sz0eXHqRgXIZOP13zX99_nOEOotE4dyCvkJx1ykGPR5ONl5K--fAVawdddlN48imLL8SQzfoX6JmFPpqX-3qCvly-_3xxVWyuP3y8WG8KJUqWCmN1UxpOFQNWam3L_BFATGdtZYXitVZcaNUZQxvRiloDUNG0FTO6rWteE36Czna6W-jlFNwA4V56cPJqvZFLj3Aq2qbidzSzpzt2Cv52NjHJwUVl-h5G4-coWbZo6rIUPKNv_kJv_BzG_JKFYoIzxppHcxV8jMHYww0okUvGspT7jDP7eq84d4PRB_JPqBl4uwOicukhwANz58Ojkpy0_R_8r_Vv0Te_xA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492432228</pqid></control><display><type>article</type><title>Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3−) based on an artificial neural network diabatic potential model</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Viel, Alexandra ; Williams, David M. G. ; Eisfeld, Wolfgang</creator><creatorcontrib>Viel, Alexandra ; Williams, David M. G. ; Eisfeld, Wolfgang</creatorcontrib><description>The photodetachment spectrum of the nitrate anion (NO3−) is simulated from first principles using wavepacket quantum dynamics propagation and a newly developed accurate full-dimensional fully coupled five state diabatic potential model. This model utilizes the recently proposed complete nuclear permutation inversion invariant artificial neural network diabatization technique [D. M. G. Williams and W. Eisfeld, J. Phys. Chem. A 124, 7608 (2020)]. The quantum dynamics simulations are designed such that temperature effects and the impact of near threshold detachment are taken into account. Thus, the two available experiments at high temperature and at cryogenic temperature using the slow electron velocity-map imaging technique can be reproduced in very good agreement. These results clearly show the relevance of hot bands and vibronic coupling between the X̃ 2A2′ ground state and the B̃ 2E′ excited state of the neutral radical. This together with the recent experiment at low temperature gives further support for the proper assignment of the ν3 fundamental, which has been debated for many years. An assignment of a not yet discussed hot band line is also proposed.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0039503</identifier><identifier>PMID: 33639724</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anions ; Artificial neural networks ; Cryogenic temperature ; First principles ; High temperature ; Imaging techniques ; Low temperature ; Neural networks ; Permutations ; Photodetachment ; Physics ; Quantum theory ; Simulation ; Temperature effects ; Wave packets ; Wave propagation</subject><ispartof>The Journal of chemical physics, 2021-02, Vol.154 (8), p.084302-084302</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-efd85e31c2a25ddf5108a0ebff6f4c37dc34dcbee184947daa148962ed9773703</citedby><cites>FETCH-LOGICAL-c452t-efd85e31c2a25ddf5108a0ebff6f4c37dc34dcbee184947daa148962ed9773703</cites><orcidid>0000-0001-9627-5647 ; 0000-0002-3691-730X ; 0000-0003-2520-7502 ; 0000000325207502 ; 000000023691730X ; 0000000196275647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0039503$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33639724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03149863$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Viel, Alexandra</creatorcontrib><creatorcontrib>Williams, David M. G.</creatorcontrib><creatorcontrib>Eisfeld, Wolfgang</creatorcontrib><title>Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3−) based on an artificial neural network diabatic potential model</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The photodetachment spectrum of the nitrate anion (NO3−) is simulated from first principles using wavepacket quantum dynamics propagation and a newly developed accurate full-dimensional fully coupled five state diabatic potential model. This model utilizes the recently proposed complete nuclear permutation inversion invariant artificial neural network diabatization technique [D. M. G. Williams and W. Eisfeld, J. Phys. Chem. A 124, 7608 (2020)]. The quantum dynamics simulations are designed such that temperature effects and the impact of near threshold detachment are taken into account. Thus, the two available experiments at high temperature and at cryogenic temperature using the slow electron velocity-map imaging technique can be reproduced in very good agreement. These results clearly show the relevance of hot bands and vibronic coupling between the X̃ 2A2′ ground state and the B̃ 2E′ excited state of the neutral radical. This together with the recent experiment at low temperature gives further support for the proper assignment of the ν3 fundamental, which has been debated for many years. An assignment of a not yet discussed hot band line is also proposed.</description><subject>Anions</subject><subject>Artificial neural networks</subject><subject>Cryogenic temperature</subject><subject>First principles</subject><subject>High temperature</subject><subject>Imaging techniques</subject><subject>Low temperature</subject><subject>Neural networks</subject><subject>Permutations</subject><subject>Photodetachment</subject><subject>Physics</subject><subject>Quantum theory</subject><subject>Simulation</subject><subject>Temperature effects</subject><subject>Wave packets</subject><subject>Wave propagation</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kdtqFTEUhoModrd64QtIwJtWmJrTnC43xVphY2_0OqzJgZ06M5kmmUrfwGvfwFfzScx0b3dBQQissPKt_0_yI_SKknNKKv6uPCeEtyXhT9CKkqYt6qolT9GKEEaLtiLVETqO8YYQQmsmnqMjzive5u0K_VwrNQdIBt_OMKZ5wPp-hMGpiKMb5h6S8yP2FqetwdPWJ69NArUdzJhwnIxKIc_sz0eXHqRgXIZOP13zX99_nOEOotE4dyCvkJx1ykGPR5ONl5K--fAVawdddlN48imLL8SQzfoX6JmFPpqX-3qCvly-_3xxVWyuP3y8WG8KJUqWCmN1UxpOFQNWam3L_BFATGdtZYXitVZcaNUZQxvRiloDUNG0FTO6rWteE36Czna6W-jlFNwA4V56cPJqvZFLj3Aq2qbidzSzpzt2Cv52NjHJwUVl-h5G4-coWbZo6rIUPKNv_kJv_BzG_JKFYoIzxppHcxV8jMHYww0okUvGspT7jDP7eq84d4PRB_JPqBl4uwOicukhwANz58Ojkpy0_R_8r_Vv0Te_xA</recordid><startdate>20210228</startdate><enddate>20210228</enddate><creator>Viel, Alexandra</creator><creator>Williams, David M. G.</creator><creator>Eisfeld, Wolfgang</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9627-5647</orcidid><orcidid>https://orcid.org/0000-0002-3691-730X</orcidid><orcidid>https://orcid.org/0000-0003-2520-7502</orcidid><orcidid>https://orcid.org/0000000325207502</orcidid><orcidid>https://orcid.org/000000023691730X</orcidid><orcidid>https://orcid.org/0000000196275647</orcidid></search><sort><creationdate>20210228</creationdate><title>Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3−) based on an artificial neural network diabatic potential model</title><author>Viel, Alexandra ; Williams, David M. G. ; Eisfeld, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-efd85e31c2a25ddf5108a0ebff6f4c37dc34dcbee184947daa148962ed9773703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anions</topic><topic>Artificial neural networks</topic><topic>Cryogenic temperature</topic><topic>First principles</topic><topic>High temperature</topic><topic>Imaging techniques</topic><topic>Low temperature</topic><topic>Neural networks</topic><topic>Permutations</topic><topic>Photodetachment</topic><topic>Physics</topic><topic>Quantum theory</topic><topic>Simulation</topic><topic>Temperature effects</topic><topic>Wave packets</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Viel, Alexandra</creatorcontrib><creatorcontrib>Williams, David M. G.</creatorcontrib><creatorcontrib>Eisfeld, Wolfgang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viel, Alexandra</au><au>Williams, David M. G.</au><au>Eisfeld, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3−) based on an artificial neural network diabatic potential model</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2021-02-28</date><risdate>2021</risdate><volume>154</volume><issue>8</issue><spage>084302</spage><epage>084302</epage><pages>084302-084302</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The photodetachment spectrum of the nitrate anion (NO3−) is simulated from first principles using wavepacket quantum dynamics propagation and a newly developed accurate full-dimensional fully coupled five state diabatic potential model. This model utilizes the recently proposed complete nuclear permutation inversion invariant artificial neural network diabatization technique [D. M. G. Williams and W. Eisfeld, J. Phys. Chem. A 124, 7608 (2020)]. The quantum dynamics simulations are designed such that temperature effects and the impact of near threshold detachment are taken into account. Thus, the two available experiments at high temperature and at cryogenic temperature using the slow electron velocity-map imaging technique can be reproduced in very good agreement. These results clearly show the relevance of hot bands and vibronic coupling between the X̃ 2A2′ ground state and the B̃ 2E′ excited state of the neutral radical. This together with the recent experiment at low temperature gives further support for the proper assignment of the ν3 fundamental, which has been debated for many years. An assignment of a not yet discussed hot band line is also proposed.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33639724</pmid><doi>10.1063/5.0039503</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9627-5647</orcidid><orcidid>https://orcid.org/0000-0002-3691-730X</orcidid><orcidid>https://orcid.org/0000-0003-2520-7502</orcidid><orcidid>https://orcid.org/0000000325207502</orcidid><orcidid>https://orcid.org/000000023691730X</orcidid><orcidid>https://orcid.org/0000000196275647</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2021-02, Vol.154 (8), p.084302-084302
issn 0021-9606
1089-7690
language eng
recordid cdi_hal_primary_oai_HAL_hal_03149863v1
source AIP Journals Complete; Alma/SFX Local Collection
subjects Anions
Artificial neural networks
Cryogenic temperature
First principles
High temperature
Imaging techniques
Low temperature
Neural networks
Permutations
Photodetachment
Physics
Quantum theory
Simulation
Temperature effects
Wave packets
Wave propagation
title Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3−) based on an artificial neural network diabatic potential model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20quantum%20dynamics%20simulation%20of%20the%20photodetachment%20spectrum%20of%20the%20nitrate%20anion%20(NO3%E2%88%92)%20based%20on%20an%20artificial%20neural%20network%20diabatic%20potential%20model&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Viel,%20Alexandra&rft.date=2021-02-28&rft.volume=154&rft.issue=8&rft.spage=084302&rft.epage=084302&rft.pages=084302-084302&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0039503&rft_dat=%3Cproquest_hal_p%3E2492432228%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492432228&rft_id=info:pmid/33639724&rfr_iscdi=true