Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3−) based on an artificial neural network diabatic potential model
The photodetachment spectrum of the nitrate anion (NO3−) is simulated from first principles using wavepacket quantum dynamics propagation and a newly developed accurate full-dimensional fully coupled five state diabatic potential model. This model utilizes the recently proposed complete nuclear perm...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2021-02, Vol.154 (8), p.084302-084302 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 084302 |
---|---|
container_issue | 8 |
container_start_page | 084302 |
container_title | The Journal of chemical physics |
container_volume | 154 |
creator | Viel, Alexandra Williams, David M. G. Eisfeld, Wolfgang |
description | The photodetachment spectrum of the nitrate anion (NO3−) is simulated from first principles using wavepacket quantum dynamics propagation and a newly developed accurate full-dimensional fully coupled five state diabatic potential model. This model utilizes the recently proposed complete nuclear permutation inversion invariant artificial neural network diabatization technique [D. M. G. Williams and W. Eisfeld, J. Phys. Chem. A 124, 7608 (2020)]. The quantum dynamics simulations are designed such that temperature effects and the impact of near threshold detachment are taken into account. Thus, the two available experiments at high temperature and at cryogenic temperature using the slow electron velocity-map imaging technique can be reproduced in very good agreement. These results clearly show the relevance of hot bands and vibronic coupling between the X̃ 2A2′ ground state and the B̃ 2E′ excited state of the neutral radical. This together with the recent experiment at low temperature gives further support for the proper assignment of the ν3 fundamental, which has been debated for many years. An assignment of a not yet discussed hot band line is also proposed. |
doi_str_mv | 10.1063/5.0039503 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03149863v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492432228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-efd85e31c2a25ddf5108a0ebff6f4c37dc34dcbee184947daa148962ed9773703</originalsourceid><addsrcrecordid>eNp9kdtqFTEUhoModrd64QtIwJtWmJrTnC43xVphY2_0OqzJgZ06M5kmmUrfwGvfwFfzScx0b3dBQQissPKt_0_yI_SKknNKKv6uPCeEtyXhT9CKkqYt6qolT9GKEEaLtiLVETqO8YYQQmsmnqMjzive5u0K_VwrNQdIBt_OMKZ5wPp-hMGpiKMb5h6S8yP2FqetwdPWJ69NArUdzJhwnIxKIc_sz0eXHqRgXIZOP13zX99_nOEOotE4dyCvkJx1ykGPR5ONl5K--fAVawdddlN48imLL8SQzfoX6JmFPpqX-3qCvly-_3xxVWyuP3y8WG8KJUqWCmN1UxpOFQNWam3L_BFATGdtZYXitVZcaNUZQxvRiloDUNG0FTO6rWteE36Czna6W-jlFNwA4V56cPJqvZFLj3Aq2qbidzSzpzt2Cv52NjHJwUVl-h5G4-coWbZo6rIUPKNv_kJv_BzG_JKFYoIzxppHcxV8jMHYww0okUvGspT7jDP7eq84d4PRB_JPqBl4uwOicukhwANz58Ojkpy0_R_8r_Vv0Te_xA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492432228</pqid></control><display><type>article</type><title>Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3−) based on an artificial neural network diabatic potential model</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Viel, Alexandra ; Williams, David M. G. ; Eisfeld, Wolfgang</creator><creatorcontrib>Viel, Alexandra ; Williams, David M. G. ; Eisfeld, Wolfgang</creatorcontrib><description>The photodetachment spectrum of the nitrate anion (NO3−) is simulated from first principles using wavepacket quantum dynamics propagation and a newly developed accurate full-dimensional fully coupled five state diabatic potential model. This model utilizes the recently proposed complete nuclear permutation inversion invariant artificial neural network diabatization technique [D. M. G. Williams and W. Eisfeld, J. Phys. Chem. A 124, 7608 (2020)]. The quantum dynamics simulations are designed such that temperature effects and the impact of near threshold detachment are taken into account. Thus, the two available experiments at high temperature and at cryogenic temperature using the slow electron velocity-map imaging technique can be reproduced in very good agreement. These results clearly show the relevance of hot bands and vibronic coupling between the X̃ 2A2′ ground state and the B̃ 2E′ excited state of the neutral radical. This together with the recent experiment at low temperature gives further support for the proper assignment of the ν3 fundamental, which has been debated for many years. An assignment of a not yet discussed hot band line is also proposed.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0039503</identifier><identifier>PMID: 33639724</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anions ; Artificial neural networks ; Cryogenic temperature ; First principles ; High temperature ; Imaging techniques ; Low temperature ; Neural networks ; Permutations ; Photodetachment ; Physics ; Quantum theory ; Simulation ; Temperature effects ; Wave packets ; Wave propagation</subject><ispartof>The Journal of chemical physics, 2021-02, Vol.154 (8), p.084302-084302</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-efd85e31c2a25ddf5108a0ebff6f4c37dc34dcbee184947daa148962ed9773703</citedby><cites>FETCH-LOGICAL-c452t-efd85e31c2a25ddf5108a0ebff6f4c37dc34dcbee184947daa148962ed9773703</cites><orcidid>0000-0001-9627-5647 ; 0000-0002-3691-730X ; 0000-0003-2520-7502 ; 0000000325207502 ; 000000023691730X ; 0000000196275647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0039503$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33639724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03149863$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Viel, Alexandra</creatorcontrib><creatorcontrib>Williams, David M. G.</creatorcontrib><creatorcontrib>Eisfeld, Wolfgang</creatorcontrib><title>Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3−) based on an artificial neural network diabatic potential model</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The photodetachment spectrum of the nitrate anion (NO3−) is simulated from first principles using wavepacket quantum dynamics propagation and a newly developed accurate full-dimensional fully coupled five state diabatic potential model. This model utilizes the recently proposed complete nuclear permutation inversion invariant artificial neural network diabatization technique [D. M. G. Williams and W. Eisfeld, J. Phys. Chem. A 124, 7608 (2020)]. The quantum dynamics simulations are designed such that temperature effects and the impact of near threshold detachment are taken into account. Thus, the two available experiments at high temperature and at cryogenic temperature using the slow electron velocity-map imaging technique can be reproduced in very good agreement. These results clearly show the relevance of hot bands and vibronic coupling between the X̃ 2A2′ ground state and the B̃ 2E′ excited state of the neutral radical. This together with the recent experiment at low temperature gives further support for the proper assignment of the ν3 fundamental, which has been debated for many years. An assignment of a not yet discussed hot band line is also proposed.</description><subject>Anions</subject><subject>Artificial neural networks</subject><subject>Cryogenic temperature</subject><subject>First principles</subject><subject>High temperature</subject><subject>Imaging techniques</subject><subject>Low temperature</subject><subject>Neural networks</subject><subject>Permutations</subject><subject>Photodetachment</subject><subject>Physics</subject><subject>Quantum theory</subject><subject>Simulation</subject><subject>Temperature effects</subject><subject>Wave packets</subject><subject>Wave propagation</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kdtqFTEUhoModrd64QtIwJtWmJrTnC43xVphY2_0OqzJgZ06M5kmmUrfwGvfwFfzScx0b3dBQQissPKt_0_yI_SKknNKKv6uPCeEtyXhT9CKkqYt6qolT9GKEEaLtiLVETqO8YYQQmsmnqMjzive5u0K_VwrNQdIBt_OMKZ5wPp-hMGpiKMb5h6S8yP2FqetwdPWJ69NArUdzJhwnIxKIc_sz0eXHqRgXIZOP13zX99_nOEOotE4dyCvkJx1ykGPR5ONl5K--fAVawdddlN48imLL8SQzfoX6JmFPpqX-3qCvly-_3xxVWyuP3y8WG8KJUqWCmN1UxpOFQNWam3L_BFATGdtZYXitVZcaNUZQxvRiloDUNG0FTO6rWteE36Czna6W-jlFNwA4V56cPJqvZFLj3Aq2qbidzSzpzt2Cv52NjHJwUVl-h5G4-coWbZo6rIUPKNv_kJv_BzG_JKFYoIzxppHcxV8jMHYww0okUvGspT7jDP7eq84d4PRB_JPqBl4uwOicukhwANz58Ojkpy0_R_8r_Vv0Te_xA</recordid><startdate>20210228</startdate><enddate>20210228</enddate><creator>Viel, Alexandra</creator><creator>Williams, David M. G.</creator><creator>Eisfeld, Wolfgang</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9627-5647</orcidid><orcidid>https://orcid.org/0000-0002-3691-730X</orcidid><orcidid>https://orcid.org/0000-0003-2520-7502</orcidid><orcidid>https://orcid.org/0000000325207502</orcidid><orcidid>https://orcid.org/000000023691730X</orcidid><orcidid>https://orcid.org/0000000196275647</orcidid></search><sort><creationdate>20210228</creationdate><title>Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3−) based on an artificial neural network diabatic potential model</title><author>Viel, Alexandra ; Williams, David M. G. ; Eisfeld, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-efd85e31c2a25ddf5108a0ebff6f4c37dc34dcbee184947daa148962ed9773703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anions</topic><topic>Artificial neural networks</topic><topic>Cryogenic temperature</topic><topic>First principles</topic><topic>High temperature</topic><topic>Imaging techniques</topic><topic>Low temperature</topic><topic>Neural networks</topic><topic>Permutations</topic><topic>Photodetachment</topic><topic>Physics</topic><topic>Quantum theory</topic><topic>Simulation</topic><topic>Temperature effects</topic><topic>Wave packets</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Viel, Alexandra</creatorcontrib><creatorcontrib>Williams, David M. G.</creatorcontrib><creatorcontrib>Eisfeld, Wolfgang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viel, Alexandra</au><au>Williams, David M. G.</au><au>Eisfeld, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3−) based on an artificial neural network diabatic potential model</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2021-02-28</date><risdate>2021</risdate><volume>154</volume><issue>8</issue><spage>084302</spage><epage>084302</epage><pages>084302-084302</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The photodetachment spectrum of the nitrate anion (NO3−) is simulated from first principles using wavepacket quantum dynamics propagation and a newly developed accurate full-dimensional fully coupled five state diabatic potential model. This model utilizes the recently proposed complete nuclear permutation inversion invariant artificial neural network diabatization technique [D. M. G. Williams and W. Eisfeld, J. Phys. Chem. A 124, 7608 (2020)]. The quantum dynamics simulations are designed such that temperature effects and the impact of near threshold detachment are taken into account. Thus, the two available experiments at high temperature and at cryogenic temperature using the slow electron velocity-map imaging technique can be reproduced in very good agreement. These results clearly show the relevance of hot bands and vibronic coupling between the X̃ 2A2′ ground state and the B̃ 2E′ excited state of the neutral radical. This together with the recent experiment at low temperature gives further support for the proper assignment of the ν3 fundamental, which has been debated for many years. An assignment of a not yet discussed hot band line is also proposed.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33639724</pmid><doi>10.1063/5.0039503</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9627-5647</orcidid><orcidid>https://orcid.org/0000-0002-3691-730X</orcidid><orcidid>https://orcid.org/0000-0003-2520-7502</orcidid><orcidid>https://orcid.org/0000000325207502</orcidid><orcidid>https://orcid.org/000000023691730X</orcidid><orcidid>https://orcid.org/0000000196275647</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2021-02, Vol.154 (8), p.084302-084302 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03149863v1 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Anions Artificial neural networks Cryogenic temperature First principles High temperature Imaging techniques Low temperature Neural networks Permutations Photodetachment Physics Quantum theory Simulation Temperature effects Wave packets Wave propagation |
title | Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3−) based on an artificial neural network diabatic potential model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20quantum%20dynamics%20simulation%20of%20the%20photodetachment%20spectrum%20of%20the%20nitrate%20anion%20(NO3%E2%88%92)%20based%20on%20an%20artificial%20neural%20network%20diabatic%20potential%20model&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Viel,%20Alexandra&rft.date=2021-02-28&rft.volume=154&rft.issue=8&rft.spage=084302&rft.epage=084302&rft.pages=084302-084302&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0039503&rft_dat=%3Cproquest_hal_p%3E2492432228%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492432228&rft_id=info:pmid/33639724&rfr_iscdi=true |