Current‐Induced Spin Torques on Single GdFeCo Magnetic Layers
Spintronics exploit spin‐orbit coupling (SOC) to generate spin currents, spin torques, and, in the absence of inversion symmetry, Rashba and Dzyaloshinskii–Moriya interactions. The widely used magnetic materials, based on 3d metals such as Fe and Co, possess a small SOC. To circumvent this shortcomi...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-03, Vol.33 (12), p.e2007047-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | e2007047 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Céspedes‐Berrocal, David Damas, Heloïse Petit‐Watelot, Sébastien Maccariello, Davide Tang, Ping Arriola‐Córdova, Aldo Vallobra, Pierre Xu, Yong Bello, Jean‐Loïs Martin, Elodie Migot, Sylvie Ghanbaja, Jaafar Zhang, Shufeng Hehn, Michel Mangin, Stéphane Panagopoulos, Christos Cros, Vincent Fert, Albert Rojas‐Sánchez, Juan‐Carlos |
description | Spintronics exploit spin‐orbit coupling (SOC) to generate spin currents, spin torques, and, in the absence of inversion symmetry, Rashba and Dzyaloshinskii–Moriya interactions. The widely used magnetic materials, based on 3d metals such as Fe and Co, possess a small SOC. To circumvent this shortcoming, the common practice has been to utilize the large SOC of nonmagnetic layers of 5d heavy metals (HMs), such as Pt, to generate spin currents and, in turn, exert spin torques on the magnetic layers. Here, a new class of material architectures is introduced, excluding nonmagnetic 5d HMs, for high‐performance spintronics operations. Very strong current‐induced torques exerted on single ferrimagnetic GdFeCo layers, due to the combination of large SOC of the Gd 5d states and inversion symmetry breaking mainly engineered by interfaces, are demonstrated. These “self‐torques” are enhanced around the magnetization compensation temperature and can be tuned by adjusting the spin absorption outside the GdFeCo layer. In other measurements, the very large emission of spin current from GdFeCo, 80% (20%) of spin anomalous Hall effect (spin Hall effect) symmetry is determined. This material platform opens new perspectives to exert “self‐torques” on single magnetic layers as well as to generate spin currents from a magnetic layer.
A new platform is proposed for spintronics. GdFeCo/Cu bilayers are found to be 20 times more efficient than Pt layers to generate spin currents from charge currents. It is also shown that these spin currents create strong “self‐torques” on GdFeCo without the need of heavy metal. This work opens up another way to control the magnetic state of devices. |
doi_str_mv | 10.1002/adma.202007047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03144856v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509247990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5137-b65dfbcaa7b813c738bdcec6dae776e6af3827f1c236a1c4fec48e2658de5e2c3</originalsourceid><addsrcrecordid>eNqF0ctOGzEUBmALFUFK2XaJRuqmLCYc38crFIWrFNQFsLY89hk6aDIT7ExRdn2EPmOfhIkCQWLDypb1-ZePf0K-UxhTAHbiwtyNGTAADULvkBGVjOYCjPxCRmC4zI0SxT75mtIjABgFao_sc65ADPsROZ32MWK7_P_333Ubeo8hu13UbXbXxaceU9a12W3dPjSYXYYLnHbZjXtocVn7bOZWGNM3slu5JuHh63pA7i_O76ZX-ezX5fV0Msu9pFznpZKhKr1zuiwo95oXZfDoVXCotULlKl4wXVHPuHLUiwq9KJApWQSUyDw_IMeb3N-usYtYz11c2c7V9moys-sz4FSIQqo_dLA_N3YRu_UQSzuvk8emcS12fbJMGGokp4Ua6I8P9LHrYztMYpkEw4Q2BgY13igfu5QiVtsXULDrGuy6BrutYbhw9Brbl3MMW_727wMwG_BcN7j6JM5Ozm4m7-EvCzWS4A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509247990</pqid></control><display><type>article</type><title>Current‐Induced Spin Torques on Single GdFeCo Magnetic Layers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Céspedes‐Berrocal, David ; Damas, Heloïse ; Petit‐Watelot, Sébastien ; Maccariello, Davide ; Tang, Ping ; Arriola‐Córdova, Aldo ; Vallobra, Pierre ; Xu, Yong ; Bello, Jean‐Loïs ; Martin, Elodie ; Migot, Sylvie ; Ghanbaja, Jaafar ; Zhang, Shufeng ; Hehn, Michel ; Mangin, Stéphane ; Panagopoulos, Christos ; Cros, Vincent ; Fert, Albert ; Rojas‐Sánchez, Juan‐Carlos</creator><creatorcontrib>Céspedes‐Berrocal, David ; Damas, Heloïse ; Petit‐Watelot, Sébastien ; Maccariello, Davide ; Tang, Ping ; Arriola‐Córdova, Aldo ; Vallobra, Pierre ; Xu, Yong ; Bello, Jean‐Loïs ; Martin, Elodie ; Migot, Sylvie ; Ghanbaja, Jaafar ; Zhang, Shufeng ; Hehn, Michel ; Mangin, Stéphane ; Panagopoulos, Christos ; Cros, Vincent ; Fert, Albert ; Rojas‐Sánchez, Juan‐Carlos</creatorcontrib><description>Spintronics exploit spin‐orbit coupling (SOC) to generate spin currents, spin torques, and, in the absence of inversion symmetry, Rashba and Dzyaloshinskii–Moriya interactions. The widely used magnetic materials, based on 3d metals such as Fe and Co, possess a small SOC. To circumvent this shortcoming, the common practice has been to utilize the large SOC of nonmagnetic layers of 5d heavy metals (HMs), such as Pt, to generate spin currents and, in turn, exert spin torques on the magnetic layers. Here, a new class of material architectures is introduced, excluding nonmagnetic 5d HMs, for high‐performance spintronics operations. Very strong current‐induced torques exerted on single ferrimagnetic GdFeCo layers, due to the combination of large SOC of the Gd 5d states and inversion symmetry breaking mainly engineered by interfaces, are demonstrated. These “self‐torques” are enhanced around the magnetization compensation temperature and can be tuned by adjusting the spin absorption outside the GdFeCo layer. In other measurements, the very large emission of spin current from GdFeCo, 80% (20%) of spin anomalous Hall effect (spin Hall effect) symmetry is determined. This material platform opens new perspectives to exert “self‐torques” on single magnetic layers as well as to generate spin currents from a magnetic layer.
A new platform is proposed for spintronics. GdFeCo/Cu bilayers are found to be 20 times more efficient than Pt layers to generate spin currents from charge currents. It is also shown that these spin currents create strong “self‐torques” on GdFeCo without the need of heavy metal. This work opens up another way to control the magnetic state of devices.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202007047</identifier><identifier>PMID: 33604960</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>amorphous ferrimagnetic GdFeCo ; Broken symmetry ; Condensed Matter ; Electromagnetism ; Gadolinium ; Hall effect ; Heavy metals ; Iron ; Magnetic materials ; Materials Science ; Physics ; Spintronics ; spin‐orbit torque ; spin‐orbitronics ; Symmetry ; Torque</subject><ispartof>Advanced materials (Weinheim), 2021-03, Vol.33 (12), p.e2007047-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5137-b65dfbcaa7b813c738bdcec6dae776e6af3827f1c236a1c4fec48e2658de5e2c3</citedby><cites>FETCH-LOGICAL-c5137-b65dfbcaa7b813c738bdcec6dae776e6af3827f1c236a1c4fec48e2658de5e2c3</cites><orcidid>0000-0002-0697-8929 ; 0000-0003-0670-8539 ; 0000-0001-7044-2785 ; 0000-0003-0272-3651 ; 0000-0003-2870-0570 ; 0000-0002-4240-5925 ; 0000-0001-6046-0437 ; 0000-0002-8497-3920 ; 0000-0003-3803-9931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202007047$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202007047$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33604960$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-03144856$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Céspedes‐Berrocal, David</creatorcontrib><creatorcontrib>Damas, Heloïse</creatorcontrib><creatorcontrib>Petit‐Watelot, Sébastien</creatorcontrib><creatorcontrib>Maccariello, Davide</creatorcontrib><creatorcontrib>Tang, Ping</creatorcontrib><creatorcontrib>Arriola‐Córdova, Aldo</creatorcontrib><creatorcontrib>Vallobra, Pierre</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Bello, Jean‐Loïs</creatorcontrib><creatorcontrib>Martin, Elodie</creatorcontrib><creatorcontrib>Migot, Sylvie</creatorcontrib><creatorcontrib>Ghanbaja, Jaafar</creatorcontrib><creatorcontrib>Zhang, Shufeng</creatorcontrib><creatorcontrib>Hehn, Michel</creatorcontrib><creatorcontrib>Mangin, Stéphane</creatorcontrib><creatorcontrib>Panagopoulos, Christos</creatorcontrib><creatorcontrib>Cros, Vincent</creatorcontrib><creatorcontrib>Fert, Albert</creatorcontrib><creatorcontrib>Rojas‐Sánchez, Juan‐Carlos</creatorcontrib><title>Current‐Induced Spin Torques on Single GdFeCo Magnetic Layers</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Spintronics exploit spin‐orbit coupling (SOC) to generate spin currents, spin torques, and, in the absence of inversion symmetry, Rashba and Dzyaloshinskii–Moriya interactions. The widely used magnetic materials, based on 3d metals such as Fe and Co, possess a small SOC. To circumvent this shortcoming, the common practice has been to utilize the large SOC of nonmagnetic layers of 5d heavy metals (HMs), such as Pt, to generate spin currents and, in turn, exert spin torques on the magnetic layers. Here, a new class of material architectures is introduced, excluding nonmagnetic 5d HMs, for high‐performance spintronics operations. Very strong current‐induced torques exerted on single ferrimagnetic GdFeCo layers, due to the combination of large SOC of the Gd 5d states and inversion symmetry breaking mainly engineered by interfaces, are demonstrated. These “self‐torques” are enhanced around the magnetization compensation temperature and can be tuned by adjusting the spin absorption outside the GdFeCo layer. In other measurements, the very large emission of spin current from GdFeCo, 80% (20%) of spin anomalous Hall effect (spin Hall effect) symmetry is determined. This material platform opens new perspectives to exert “self‐torques” on single magnetic layers as well as to generate spin currents from a magnetic layer.
A new platform is proposed for spintronics. GdFeCo/Cu bilayers are found to be 20 times more efficient than Pt layers to generate spin currents from charge currents. It is also shown that these spin currents create strong “self‐torques” on GdFeCo without the need of heavy metal. This work opens up another way to control the magnetic state of devices.</description><subject>amorphous ferrimagnetic GdFeCo</subject><subject>Broken symmetry</subject><subject>Condensed Matter</subject><subject>Electromagnetism</subject><subject>Gadolinium</subject><subject>Hall effect</subject><subject>Heavy metals</subject><subject>Iron</subject><subject>Magnetic materials</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Spintronics</subject><subject>spin‐orbit torque</subject><subject>spin‐orbitronics</subject><subject>Symmetry</subject><subject>Torque</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0ctOGzEUBmALFUFK2XaJRuqmLCYc38crFIWrFNQFsLY89hk6aDIT7ExRdn2EPmOfhIkCQWLDypb1-ZePf0K-UxhTAHbiwtyNGTAADULvkBGVjOYCjPxCRmC4zI0SxT75mtIjABgFao_sc65ADPsROZ32MWK7_P_333Ubeo8hu13UbXbXxaceU9a12W3dPjSYXYYLnHbZjXtocVn7bOZWGNM3slu5JuHh63pA7i_O76ZX-ezX5fV0Msu9pFznpZKhKr1zuiwo95oXZfDoVXCotULlKl4wXVHPuHLUiwq9KJApWQSUyDw_IMeb3N-usYtYz11c2c7V9moys-sz4FSIQqo_dLA_N3YRu_UQSzuvk8emcS12fbJMGGokp4Ua6I8P9LHrYztMYpkEw4Q2BgY13igfu5QiVtsXULDrGuy6BrutYbhw9Brbl3MMW_727wMwG_BcN7j6JM5Ozm4m7-EvCzWS4A</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Céspedes‐Berrocal, David</creator><creator>Damas, Heloïse</creator><creator>Petit‐Watelot, Sébastien</creator><creator>Maccariello, Davide</creator><creator>Tang, Ping</creator><creator>Arriola‐Córdova, Aldo</creator><creator>Vallobra, Pierre</creator><creator>Xu, Yong</creator><creator>Bello, Jean‐Loïs</creator><creator>Martin, Elodie</creator><creator>Migot, Sylvie</creator><creator>Ghanbaja, Jaafar</creator><creator>Zhang, Shufeng</creator><creator>Hehn, Michel</creator><creator>Mangin, Stéphane</creator><creator>Panagopoulos, Christos</creator><creator>Cros, Vincent</creator><creator>Fert, Albert</creator><creator>Rojas‐Sánchez, Juan‐Carlos</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0697-8929</orcidid><orcidid>https://orcid.org/0000-0003-0670-8539</orcidid><orcidid>https://orcid.org/0000-0001-7044-2785</orcidid><orcidid>https://orcid.org/0000-0003-0272-3651</orcidid><orcidid>https://orcid.org/0000-0003-2870-0570</orcidid><orcidid>https://orcid.org/0000-0002-4240-5925</orcidid><orcidid>https://orcid.org/0000-0001-6046-0437</orcidid><orcidid>https://orcid.org/0000-0002-8497-3920</orcidid><orcidid>https://orcid.org/0000-0003-3803-9931</orcidid></search><sort><creationdate>20210301</creationdate><title>Current‐Induced Spin Torques on Single GdFeCo Magnetic Layers</title><author>Céspedes‐Berrocal, David ; Damas, Heloïse ; Petit‐Watelot, Sébastien ; Maccariello, Davide ; Tang, Ping ; Arriola‐Córdova, Aldo ; Vallobra, Pierre ; Xu, Yong ; Bello, Jean‐Loïs ; Martin, Elodie ; Migot, Sylvie ; Ghanbaja, Jaafar ; Zhang, Shufeng ; Hehn, Michel ; Mangin, Stéphane ; Panagopoulos, Christos ; Cros, Vincent ; Fert, Albert ; Rojas‐Sánchez, Juan‐Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5137-b65dfbcaa7b813c738bdcec6dae776e6af3827f1c236a1c4fec48e2658de5e2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>amorphous ferrimagnetic GdFeCo</topic><topic>Broken symmetry</topic><topic>Condensed Matter</topic><topic>Electromagnetism</topic><topic>Gadolinium</topic><topic>Hall effect</topic><topic>Heavy metals</topic><topic>Iron</topic><topic>Magnetic materials</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Spintronics</topic><topic>spin‐orbit torque</topic><topic>spin‐orbitronics</topic><topic>Symmetry</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Céspedes‐Berrocal, David</creatorcontrib><creatorcontrib>Damas, Heloïse</creatorcontrib><creatorcontrib>Petit‐Watelot, Sébastien</creatorcontrib><creatorcontrib>Maccariello, Davide</creatorcontrib><creatorcontrib>Tang, Ping</creatorcontrib><creatorcontrib>Arriola‐Córdova, Aldo</creatorcontrib><creatorcontrib>Vallobra, Pierre</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Bello, Jean‐Loïs</creatorcontrib><creatorcontrib>Martin, Elodie</creatorcontrib><creatorcontrib>Migot, Sylvie</creatorcontrib><creatorcontrib>Ghanbaja, Jaafar</creatorcontrib><creatorcontrib>Zhang, Shufeng</creatorcontrib><creatorcontrib>Hehn, Michel</creatorcontrib><creatorcontrib>Mangin, Stéphane</creatorcontrib><creatorcontrib>Panagopoulos, Christos</creatorcontrib><creatorcontrib>Cros, Vincent</creatorcontrib><creatorcontrib>Fert, Albert</creatorcontrib><creatorcontrib>Rojas‐Sánchez, Juan‐Carlos</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Céspedes‐Berrocal, David</au><au>Damas, Heloïse</au><au>Petit‐Watelot, Sébastien</au><au>Maccariello, Davide</au><au>Tang, Ping</au><au>Arriola‐Córdova, Aldo</au><au>Vallobra, Pierre</au><au>Xu, Yong</au><au>Bello, Jean‐Loïs</au><au>Martin, Elodie</au><au>Migot, Sylvie</au><au>Ghanbaja, Jaafar</au><au>Zhang, Shufeng</au><au>Hehn, Michel</au><au>Mangin, Stéphane</au><au>Panagopoulos, Christos</au><au>Cros, Vincent</au><au>Fert, Albert</au><au>Rojas‐Sánchez, Juan‐Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current‐Induced Spin Torques on Single GdFeCo Magnetic Layers</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>33</volume><issue>12</issue><spage>e2007047</spage><epage>n/a</epage><pages>e2007047-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Spintronics exploit spin‐orbit coupling (SOC) to generate spin currents, spin torques, and, in the absence of inversion symmetry, Rashba and Dzyaloshinskii–Moriya interactions. The widely used magnetic materials, based on 3d metals such as Fe and Co, possess a small SOC. To circumvent this shortcoming, the common practice has been to utilize the large SOC of nonmagnetic layers of 5d heavy metals (HMs), such as Pt, to generate spin currents and, in turn, exert spin torques on the magnetic layers. Here, a new class of material architectures is introduced, excluding nonmagnetic 5d HMs, for high‐performance spintronics operations. Very strong current‐induced torques exerted on single ferrimagnetic GdFeCo layers, due to the combination of large SOC of the Gd 5d states and inversion symmetry breaking mainly engineered by interfaces, are demonstrated. These “self‐torques” are enhanced around the magnetization compensation temperature and can be tuned by adjusting the spin absorption outside the GdFeCo layer. In other measurements, the very large emission of spin current from GdFeCo, 80% (20%) of spin anomalous Hall effect (spin Hall effect) symmetry is determined. This material platform opens new perspectives to exert “self‐torques” on single magnetic layers as well as to generate spin currents from a magnetic layer.
A new platform is proposed for spintronics. GdFeCo/Cu bilayers are found to be 20 times more efficient than Pt layers to generate spin currents from charge currents. It is also shown that these spin currents create strong “self‐torques” on GdFeCo without the need of heavy metal. This work opens up another way to control the magnetic state of devices.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33604960</pmid><doi>10.1002/adma.202007047</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0697-8929</orcidid><orcidid>https://orcid.org/0000-0003-0670-8539</orcidid><orcidid>https://orcid.org/0000-0001-7044-2785</orcidid><orcidid>https://orcid.org/0000-0003-0272-3651</orcidid><orcidid>https://orcid.org/0000-0003-2870-0570</orcidid><orcidid>https://orcid.org/0000-0002-4240-5925</orcidid><orcidid>https://orcid.org/0000-0001-6046-0437</orcidid><orcidid>https://orcid.org/0000-0002-8497-3920</orcidid><orcidid>https://orcid.org/0000-0003-3803-9931</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-03, Vol.33 (12), p.e2007047-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03144856v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | amorphous ferrimagnetic GdFeCo Broken symmetry Condensed Matter Electromagnetism Gadolinium Hall effect Heavy metals Iron Magnetic materials Materials Science Physics Spintronics spin‐orbit torque spin‐orbitronics Symmetry Torque |
title | Current‐Induced Spin Torques on Single GdFeCo Magnetic Layers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A56%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%E2%80%90Induced%20Spin%20Torques%20on%20Single%20GdFeCo%20Magnetic%20Layers&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=C%C3%A9spedes%E2%80%90Berrocal,%20David&rft.date=2021-03-01&rft.volume=33&rft.issue=12&rft.spage=e2007047&rft.epage=n/a&rft.pages=e2007047-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202007047&rft_dat=%3Cproquest_hal_p%3E2509247990%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509247990&rft_id=info:pmid/33604960&rfr_iscdi=true |