On longitudinal radiation pressure cross-sections in the generalized Lorenz–Mie theory and their numerical relationship with the dipole theory of forces
A recent work devoted to the longitudinal optical forces exerted by circularly symmetric Bessel beams on point-like particles in the Rayleigh regime of the generalized Lorenz–Mie theory (GLMT) confirmed the existence of nonstandard forces (named axicon forces in the context of Bessel beams) that see...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. B, Optical physics Optical physics, 2021-03, Vol.38 (3), p.825 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 825 |
container_title | Journal of the Optical Society of America. B, Optical physics |
container_volume | 38 |
creator | Ambrosio, Leonardo André Gouesbet, Gérard |
description | A recent work devoted to the longitudinal optical forces exerted by circularly symmetric Bessel beams on point-like particles in the Rayleigh regime of the generalized Lorenz–Mie theory (GLMT) confirmed the existence of nonstandard forces (named axicon forces in the context of Bessel beams) that seemingly cannot be expressed in terms of scattering and gradient forces traditionally discussed in the framework of the dipole theory of forces. These results lead to this question: Do the Rayleigh limit of the GLMT and the dipole theory of forces actually agree, or are they in disagreement? If so, the Rayleigh limit of the generalized Lorenz–Mie theory would have to be preferred because it provides a highly accurate formulation. To find a definitive answer to the question, numerical comparisons done between optical forces exerted in both frameworks demonstrated an extremely accurate agreement up to 1000 decimal places. This leads to the conjecture that the Rayleigh limit of GLMT might indeed exactly identify with the usual dipole theory of forces. |
doi_str_mv | 10.1364/JOSAB.412907 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03144353v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03144353v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c199t-7de9b0a77ea9326ffba96aac748aa7d4ff15f4315a54370cfa5c1a5a1b30248e3</originalsourceid><addsrcrecordid>eNo9kUFOwzAQRS0EEqWw4wDeIpFix3bTLEsFFBTUBbCOpsm4MUrtyE5B7Yo7sON4nASSIlYz-vP_W8wn5JyzERdjefWweJpejySPU5YckAFXMYsmSrJDMmCJZJGIY3lMTkJ4ZYxJFscD8rWwtHZ2ZdpNaSzU1ENpoDXO0sZjCBuPtPAuhChg0cmBGkvbCukKLXqozQ5LmjmPdvf98flosDs6v6Vgy241ntrNGr0pOjjWPTtUpqHvpq16UmkaV__nnKba-QLDKTnSUAc8-5tD8nJ78zybR9ni7n42zaKCp2kbJSWmSwZJgpCKeKz1EtIxQJHICUBSSq250lJwBUqKhBUaVMFBAV8KFssJiiG52HMrqPPGmzX4be7A5PNplncaE1xKocQb__Ve7r39Tzzq_wBneddB3neQ7zsQPzitfvk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On longitudinal radiation pressure cross-sections in the generalized Lorenz–Mie theory and their numerical relationship with the dipole theory of forces</title><source>Optica Publishing Group Journals</source><creator>Ambrosio, Leonardo André ; Gouesbet, Gérard</creator><creatorcontrib>Ambrosio, Leonardo André ; Gouesbet, Gérard</creatorcontrib><description>A recent work devoted to the longitudinal optical forces exerted by circularly symmetric Bessel beams on point-like particles in the Rayleigh regime of the generalized Lorenz–Mie theory (GLMT) confirmed the existence of nonstandard forces (named axicon forces in the context of Bessel beams) that seemingly cannot be expressed in terms of scattering and gradient forces traditionally discussed in the framework of the dipole theory of forces. These results lead to this question: Do the Rayleigh limit of the GLMT and the dipole theory of forces actually agree, or are they in disagreement? If so, the Rayleigh limit of the generalized Lorenz–Mie theory would have to be preferred because it provides a highly accurate formulation. To find a definitive answer to the question, numerical comparisons done between optical forces exerted in both frameworks demonstrated an extremely accurate agreement up to 1000 decimal places. This leads to the conjecture that the Rayleigh limit of GLMT might indeed exactly identify with the usual dipole theory of forces.</description><identifier>ISSN: 0740-3224</identifier><identifier>EISSN: 1520-8540</identifier><identifier>DOI: 10.1364/JOSAB.412907</identifier><language>eng</language><publisher>Optical Society of America</publisher><subject>Engineering Sciences ; Fluids mechanics ; Mechanics ; Reactive fluid environment</subject><ispartof>Journal of the Optical Society of America. B, Optical physics, 2021-03, Vol.38 (3), p.825</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c199t-7de9b0a77ea9326ffba96aac748aa7d4ff15f4315a54370cfa5c1a5a1b30248e3</citedby><cites>FETCH-LOGICAL-c199t-7de9b0a77ea9326ffba96aac748aa7d4ff15f4315a54370cfa5c1a5a1b30248e3</cites><orcidid>0000-0003-0404-9509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3244,27903,27904</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-03144353$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ambrosio, Leonardo André</creatorcontrib><creatorcontrib>Gouesbet, Gérard</creatorcontrib><title>On longitudinal radiation pressure cross-sections in the generalized Lorenz–Mie theory and their numerical relationship with the dipole theory of forces</title><title>Journal of the Optical Society of America. B, Optical physics</title><description>A recent work devoted to the longitudinal optical forces exerted by circularly symmetric Bessel beams on point-like particles in the Rayleigh regime of the generalized Lorenz–Mie theory (GLMT) confirmed the existence of nonstandard forces (named axicon forces in the context of Bessel beams) that seemingly cannot be expressed in terms of scattering and gradient forces traditionally discussed in the framework of the dipole theory of forces. These results lead to this question: Do the Rayleigh limit of the GLMT and the dipole theory of forces actually agree, or are they in disagreement? If so, the Rayleigh limit of the generalized Lorenz–Mie theory would have to be preferred because it provides a highly accurate formulation. To find a definitive answer to the question, numerical comparisons done between optical forces exerted in both frameworks demonstrated an extremely accurate agreement up to 1000 decimal places. This leads to the conjecture that the Rayleigh limit of GLMT might indeed exactly identify with the usual dipole theory of forces.</description><subject>Engineering Sciences</subject><subject>Fluids mechanics</subject><subject>Mechanics</subject><subject>Reactive fluid environment</subject><issn>0740-3224</issn><issn>1520-8540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kUFOwzAQRS0EEqWw4wDeIpFix3bTLEsFFBTUBbCOpsm4MUrtyE5B7Yo7sON4nASSIlYz-vP_W8wn5JyzERdjefWweJpejySPU5YckAFXMYsmSrJDMmCJZJGIY3lMTkJ4ZYxJFscD8rWwtHZ2ZdpNaSzU1ENpoDXO0sZjCBuPtPAuhChg0cmBGkvbCukKLXqozQ5LmjmPdvf98flosDs6v6Vgy241ntrNGr0pOjjWPTtUpqHvpq16UmkaV__nnKba-QLDKTnSUAc8-5tD8nJ78zybR9ni7n42zaKCp2kbJSWmSwZJgpCKeKz1EtIxQJHICUBSSq250lJwBUqKhBUaVMFBAV8KFssJiiG52HMrqPPGmzX4be7A5PNplncaE1xKocQb__Ve7r39Tzzq_wBneddB3neQ7zsQPzitfvk</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Ambrosio, Leonardo André</creator><creator>Gouesbet, Gérard</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0404-9509</orcidid></search><sort><creationdate>20210301</creationdate><title>On longitudinal radiation pressure cross-sections in the generalized Lorenz–Mie theory and their numerical relationship with the dipole theory of forces</title><author>Ambrosio, Leonardo André ; Gouesbet, Gérard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c199t-7de9b0a77ea9326ffba96aac748aa7d4ff15f4315a54370cfa5c1a5a1b30248e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Engineering Sciences</topic><topic>Fluids mechanics</topic><topic>Mechanics</topic><topic>Reactive fluid environment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambrosio, Leonardo André</creatorcontrib><creatorcontrib>Gouesbet, Gérard</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of the Optical Society of America. B, Optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambrosio, Leonardo André</au><au>Gouesbet, Gérard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On longitudinal radiation pressure cross-sections in the generalized Lorenz–Mie theory and their numerical relationship with the dipole theory of forces</atitle><jtitle>Journal of the Optical Society of America. B, Optical physics</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>38</volume><issue>3</issue><spage>825</spage><pages>825-</pages><issn>0740-3224</issn><eissn>1520-8540</eissn><abstract>A recent work devoted to the longitudinal optical forces exerted by circularly symmetric Bessel beams on point-like particles in the Rayleigh regime of the generalized Lorenz–Mie theory (GLMT) confirmed the existence of nonstandard forces (named axicon forces in the context of Bessel beams) that seemingly cannot be expressed in terms of scattering and gradient forces traditionally discussed in the framework of the dipole theory of forces. These results lead to this question: Do the Rayleigh limit of the GLMT and the dipole theory of forces actually agree, or are they in disagreement? If so, the Rayleigh limit of the generalized Lorenz–Mie theory would have to be preferred because it provides a highly accurate formulation. To find a definitive answer to the question, numerical comparisons done between optical forces exerted in both frameworks demonstrated an extremely accurate agreement up to 1000 decimal places. This leads to the conjecture that the Rayleigh limit of GLMT might indeed exactly identify with the usual dipole theory of forces.</abstract><pub>Optical Society of America</pub><doi>10.1364/JOSAB.412907</doi><orcidid>https://orcid.org/0000-0003-0404-9509</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3224 |
ispartof | Journal of the Optical Society of America. B, Optical physics, 2021-03, Vol.38 (3), p.825 |
issn | 0740-3224 1520-8540 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03144353v1 |
source | Optica Publishing Group Journals |
subjects | Engineering Sciences Fluids mechanics Mechanics Reactive fluid environment |
title | On longitudinal radiation pressure cross-sections in the generalized Lorenz–Mie theory and their numerical relationship with the dipole theory of forces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A08%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20longitudinal%20radiation%20pressure%20cross-sections%20in%20the%20generalized%20Lorenz%E2%80%93Mie%20theory%20and%20their%20numerical%20relationship%20with%20the%20dipole%20theory%20of%20forces&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20B,%20Optical%20physics&rft.au=Ambrosio,%20Leonardo%20Andr%C3%A9&rft.date=2021-03-01&rft.volume=38&rft.issue=3&rft.spage=825&rft.pages=825-&rft.issn=0740-3224&rft.eissn=1520-8540&rft_id=info:doi/10.1364/JOSAB.412907&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03144353v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |