On longitudinal radiation pressure cross-sections in the generalized Lorenz–Mie theory and their numerical relationship with the dipole theory of forces

A recent work devoted to the longitudinal optical forces exerted by circularly symmetric Bessel beams on point-like particles in the Rayleigh regime of the generalized Lorenz–Mie theory (GLMT) confirmed the existence of nonstandard forces (named axicon forces in the context of Bessel beams) that see...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. B, Optical physics Optical physics, 2021-03, Vol.38 (3), p.825
Hauptverfasser: Ambrosio, Leonardo André, Gouesbet, Gérard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 825
container_title Journal of the Optical Society of America. B, Optical physics
container_volume 38
creator Ambrosio, Leonardo André
Gouesbet, Gérard
description A recent work devoted to the longitudinal optical forces exerted by circularly symmetric Bessel beams on point-like particles in the Rayleigh regime of the generalized Lorenz–Mie theory (GLMT) confirmed the existence of nonstandard forces (named axicon forces in the context of Bessel beams) that seemingly cannot be expressed in terms of scattering and gradient forces traditionally discussed in the framework of the dipole theory of forces. These results lead to this question: Do the Rayleigh limit of the GLMT and the dipole theory of forces actually agree, or are they in disagreement? If so, the Rayleigh limit of the generalized Lorenz–Mie theory would have to be preferred because it provides a highly accurate formulation. To find a definitive answer to the question, numerical comparisons done between optical forces exerted in both frameworks demonstrated an extremely accurate agreement up to 1000 decimal places. This leads to the conjecture that the Rayleigh limit of GLMT might indeed exactly identify with the usual dipole theory of forces.
doi_str_mv 10.1364/JOSAB.412907
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03144353v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03144353v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c199t-7de9b0a77ea9326ffba96aac748aa7d4ff15f4315a54370cfa5c1a5a1b30248e3</originalsourceid><addsrcrecordid>eNo9kUFOwzAQRS0EEqWw4wDeIpFix3bTLEsFFBTUBbCOpsm4MUrtyE5B7Yo7sON4nASSIlYz-vP_W8wn5JyzERdjefWweJpejySPU5YckAFXMYsmSrJDMmCJZJGIY3lMTkJ4ZYxJFscD8rWwtHZ2ZdpNaSzU1ENpoDXO0sZjCBuPtPAuhChg0cmBGkvbCukKLXqozQ5LmjmPdvf98flosDs6v6Vgy241ntrNGr0pOjjWPTtUpqHvpq16UmkaV__nnKba-QLDKTnSUAc8-5tD8nJ78zybR9ni7n42zaKCp2kbJSWmSwZJgpCKeKz1EtIxQJHICUBSSq250lJwBUqKhBUaVMFBAV8KFssJiiG52HMrqPPGmzX4be7A5PNplncaE1xKocQb__Ve7r39Tzzq_wBneddB3neQ7zsQPzitfvk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On longitudinal radiation pressure cross-sections in the generalized Lorenz–Mie theory and their numerical relationship with the dipole theory of forces</title><source>Optica Publishing Group Journals</source><creator>Ambrosio, Leonardo André ; Gouesbet, Gérard</creator><creatorcontrib>Ambrosio, Leonardo André ; Gouesbet, Gérard</creatorcontrib><description>A recent work devoted to the longitudinal optical forces exerted by circularly symmetric Bessel beams on point-like particles in the Rayleigh regime of the generalized Lorenz–Mie theory (GLMT) confirmed the existence of nonstandard forces (named axicon forces in the context of Bessel beams) that seemingly cannot be expressed in terms of scattering and gradient forces traditionally discussed in the framework of the dipole theory of forces. These results lead to this question: Do the Rayleigh limit of the GLMT and the dipole theory of forces actually agree, or are they in disagreement? If so, the Rayleigh limit of the generalized Lorenz–Mie theory would have to be preferred because it provides a highly accurate formulation. To find a definitive answer to the question, numerical comparisons done between optical forces exerted in both frameworks demonstrated an extremely accurate agreement up to 1000 decimal places. This leads to the conjecture that the Rayleigh limit of GLMT might indeed exactly identify with the usual dipole theory of forces.</description><identifier>ISSN: 0740-3224</identifier><identifier>EISSN: 1520-8540</identifier><identifier>DOI: 10.1364/JOSAB.412907</identifier><language>eng</language><publisher>Optical Society of America</publisher><subject>Engineering Sciences ; Fluids mechanics ; Mechanics ; Reactive fluid environment</subject><ispartof>Journal of the Optical Society of America. B, Optical physics, 2021-03, Vol.38 (3), p.825</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c199t-7de9b0a77ea9326ffba96aac748aa7d4ff15f4315a54370cfa5c1a5a1b30248e3</citedby><cites>FETCH-LOGICAL-c199t-7de9b0a77ea9326ffba96aac748aa7d4ff15f4315a54370cfa5c1a5a1b30248e3</cites><orcidid>0000-0003-0404-9509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3244,27903,27904</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-03144353$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ambrosio, Leonardo André</creatorcontrib><creatorcontrib>Gouesbet, Gérard</creatorcontrib><title>On longitudinal radiation pressure cross-sections in the generalized Lorenz–Mie theory and their numerical relationship with the dipole theory of forces</title><title>Journal of the Optical Society of America. B, Optical physics</title><description>A recent work devoted to the longitudinal optical forces exerted by circularly symmetric Bessel beams on point-like particles in the Rayleigh regime of the generalized Lorenz–Mie theory (GLMT) confirmed the existence of nonstandard forces (named axicon forces in the context of Bessel beams) that seemingly cannot be expressed in terms of scattering and gradient forces traditionally discussed in the framework of the dipole theory of forces. These results lead to this question: Do the Rayleigh limit of the GLMT and the dipole theory of forces actually agree, or are they in disagreement? If so, the Rayleigh limit of the generalized Lorenz–Mie theory would have to be preferred because it provides a highly accurate formulation. To find a definitive answer to the question, numerical comparisons done between optical forces exerted in both frameworks demonstrated an extremely accurate agreement up to 1000 decimal places. This leads to the conjecture that the Rayleigh limit of GLMT might indeed exactly identify with the usual dipole theory of forces.</description><subject>Engineering Sciences</subject><subject>Fluids mechanics</subject><subject>Mechanics</subject><subject>Reactive fluid environment</subject><issn>0740-3224</issn><issn>1520-8540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kUFOwzAQRS0EEqWw4wDeIpFix3bTLEsFFBTUBbCOpsm4MUrtyE5B7Yo7sON4nASSIlYz-vP_W8wn5JyzERdjefWweJpejySPU5YckAFXMYsmSrJDMmCJZJGIY3lMTkJ4ZYxJFscD8rWwtHZ2ZdpNaSzU1ENpoDXO0sZjCBuPtPAuhChg0cmBGkvbCukKLXqozQ5LmjmPdvf98flosDs6v6Vgy241ntrNGr0pOjjWPTtUpqHvpq16UmkaV__nnKba-QLDKTnSUAc8-5tD8nJ78zybR9ni7n42zaKCp2kbJSWmSwZJgpCKeKz1EtIxQJHICUBSSq250lJwBUqKhBUaVMFBAV8KFssJiiG52HMrqPPGmzX4be7A5PNplncaE1xKocQb__Ve7r39Tzzq_wBneddB3neQ7zsQPzitfvk</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Ambrosio, Leonardo André</creator><creator>Gouesbet, Gérard</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0404-9509</orcidid></search><sort><creationdate>20210301</creationdate><title>On longitudinal radiation pressure cross-sections in the generalized Lorenz–Mie theory and their numerical relationship with the dipole theory of forces</title><author>Ambrosio, Leonardo André ; Gouesbet, Gérard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c199t-7de9b0a77ea9326ffba96aac748aa7d4ff15f4315a54370cfa5c1a5a1b30248e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Engineering Sciences</topic><topic>Fluids mechanics</topic><topic>Mechanics</topic><topic>Reactive fluid environment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambrosio, Leonardo André</creatorcontrib><creatorcontrib>Gouesbet, Gérard</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of the Optical Society of America. B, Optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambrosio, Leonardo André</au><au>Gouesbet, Gérard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On longitudinal radiation pressure cross-sections in the generalized Lorenz–Mie theory and their numerical relationship with the dipole theory of forces</atitle><jtitle>Journal of the Optical Society of America. B, Optical physics</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>38</volume><issue>3</issue><spage>825</spage><pages>825-</pages><issn>0740-3224</issn><eissn>1520-8540</eissn><abstract>A recent work devoted to the longitudinal optical forces exerted by circularly symmetric Bessel beams on point-like particles in the Rayleigh regime of the generalized Lorenz–Mie theory (GLMT) confirmed the existence of nonstandard forces (named axicon forces in the context of Bessel beams) that seemingly cannot be expressed in terms of scattering and gradient forces traditionally discussed in the framework of the dipole theory of forces. These results lead to this question: Do the Rayleigh limit of the GLMT and the dipole theory of forces actually agree, or are they in disagreement? If so, the Rayleigh limit of the generalized Lorenz–Mie theory would have to be preferred because it provides a highly accurate formulation. To find a definitive answer to the question, numerical comparisons done between optical forces exerted in both frameworks demonstrated an extremely accurate agreement up to 1000 decimal places. This leads to the conjecture that the Rayleigh limit of GLMT might indeed exactly identify with the usual dipole theory of forces.</abstract><pub>Optical Society of America</pub><doi>10.1364/JOSAB.412907</doi><orcidid>https://orcid.org/0000-0003-0404-9509</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0740-3224
ispartof Journal of the Optical Society of America. B, Optical physics, 2021-03, Vol.38 (3), p.825
issn 0740-3224
1520-8540
language eng
recordid cdi_hal_primary_oai_HAL_hal_03144353v1
source Optica Publishing Group Journals
subjects Engineering Sciences
Fluids mechanics
Mechanics
Reactive fluid environment
title On longitudinal radiation pressure cross-sections in the generalized Lorenz–Mie theory and their numerical relationship with the dipole theory of forces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A08%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20longitudinal%20radiation%20pressure%20cross-sections%20in%20the%20generalized%20Lorenz%E2%80%93Mie%20theory%20and%20their%20numerical%20relationship%20with%20the%20dipole%20theory%20of%20forces&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20B,%20Optical%20physics&rft.au=Ambrosio,%20Leonardo%20Andr%C3%A9&rft.date=2021-03-01&rft.volume=38&rft.issue=3&rft.spage=825&rft.pages=825-&rft.issn=0740-3224&rft.eissn=1520-8540&rft_id=info:doi/10.1364/JOSAB.412907&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03144353v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true