OLIMP: A Heterogeneous Multimodal Dataset for Advanced Environment Perception
A reliable environment perception is a crucial task for autonomous driving, especially in dense traffic areas. Recent improvements and breakthroughs in scene understanding for intelligent transportation systems are mainly based on deep learning and the fusion of different modalities. In this context...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2020-04, Vol.9 (4), p.560 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 560 |
container_title | Electronics (Basel) |
container_volume | 9 |
creator | Mimouna, Amira Alouani, Ihsen Ben Khalifa, Anouar El Hillali, Yassin Taleb-Ahmed, Abdelmalik Menhaj, Atika Ouahabi, Abdeldjalil Ben Amara, Najoua Essoukri |
description | A reliable environment perception is a crucial task for autonomous driving, especially in dense traffic areas. Recent improvements and breakthroughs in scene understanding for intelligent transportation systems are mainly based on deep learning and the fusion of different modalities. In this context, we introduce OLIMP: A heterOgeneous Multimodal Dataset for Advanced EnvIronMent Perception. This is the first public, multimodal and synchronized dataset that includes UWB radar data, acoustic data, narrow-band radar data and images. OLIMP comprises 407 scenes and 47,354 synchronized frames, presenting four categories: pedestrian, cyclist, car and tram. The dataset includes various challenges related to dense urban traffic such as cluttered environment and different weather conditions. To demonstrate the usefulness of the introduced dataset, we propose a fusion framework that combines the four modalities for multi object detection. The obtained results are promising and spur for future research. |
doi_str_mv | 10.3390/electronics9040560 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03140627v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03140627v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-e508247667da89e592a1f0078264e289a7f475cd7de43c9db77572952997a0243</originalsourceid><addsrcrecordid>eNplkE9LAzEQxYMoWGq_gKdcPazO5s9m422ptS1saQ96XmIyqyvbTUnSgt_elooIvss8Hr-ZgUfIbQ73nGt4wB5tCn7obNQgQBZwQUYMlM400-zyj78mkxg_4Sid85LDiKzW9XK1eaQVXWDC4N9xQL-PdLXvU7f1zvT0ySQTMdHWB1q5gxksOjobDt3x5RaHRDcYLO5S54cbctWaPuLkZ47J6_PsZbrI6vV8Oa3qzHImU4YSSiZUUShnSo1SM5O3AKpkhUBWaqNaoaR1yqHgVrs3paRiWjKtlQEm-Jjcne9-mL7ZhW5rwlfjTdcsqro5ZcBzAQVTh_zIsjNrg48xYPu7kENz6q_53x__BlpNZKE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>OLIMP: A Heterogeneous Multimodal Dataset for Advanced Environment Perception</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mimouna, Amira ; Alouani, Ihsen ; Ben Khalifa, Anouar ; El Hillali, Yassin ; Taleb-Ahmed, Abdelmalik ; Menhaj, Atika ; Ouahabi, Abdeldjalil ; Ben Amara, Najoua Essoukri</creator><creatorcontrib>Mimouna, Amira ; Alouani, Ihsen ; Ben Khalifa, Anouar ; El Hillali, Yassin ; Taleb-Ahmed, Abdelmalik ; Menhaj, Atika ; Ouahabi, Abdeldjalil ; Ben Amara, Najoua Essoukri</creatorcontrib><description>A reliable environment perception is a crucial task for autonomous driving, especially in dense traffic areas. Recent improvements and breakthroughs in scene understanding for intelligent transportation systems are mainly based on deep learning and the fusion of different modalities. In this context, we introduce OLIMP: A heterOgeneous Multimodal Dataset for Advanced EnvIronMent Perception. This is the first public, multimodal and synchronized dataset that includes UWB radar data, acoustic data, narrow-band radar data and images. OLIMP comprises 407 scenes and 47,354 synchronized frames, presenting four categories: pedestrian, cyclist, car and tram. The dataset includes various challenges related to dense urban traffic such as cluttered environment and different weather conditions. To demonstrate the usefulness of the introduced dataset, we propose a fusion framework that combines the four modalities for multi object detection. The obtained results are promising and spur for future research.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics9040560</identifier><language>eng</language><publisher>MDPI</publisher><subject>Artificial Intelligence ; Computer Science ; Electronics ; Engineering Sciences ; Networking and Internet Architecture ; Signal and Image processing</subject><ispartof>Electronics (Basel), 2020-04, Vol.9 (4), p.560</ispartof><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-e508247667da89e592a1f0078264e289a7f475cd7de43c9db77572952997a0243</citedby><cites>FETCH-LOGICAL-c325t-e508247667da89e592a1f0078264e289a7f475cd7de43c9db77572952997a0243</cites><orcidid>0000-0001-5102-8087 ; 0000-0002-9946-0829 ; 0000-0001-7218-3799 ; 0000-0002-6392-7693 ; 0000-0002-6145-8475 ; 0000-0001-8750-1905 ; 0000-0003-3658-643X ; 0000-0002-3980-9902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03140627$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mimouna, Amira</creatorcontrib><creatorcontrib>Alouani, Ihsen</creatorcontrib><creatorcontrib>Ben Khalifa, Anouar</creatorcontrib><creatorcontrib>El Hillali, Yassin</creatorcontrib><creatorcontrib>Taleb-Ahmed, Abdelmalik</creatorcontrib><creatorcontrib>Menhaj, Atika</creatorcontrib><creatorcontrib>Ouahabi, Abdeldjalil</creatorcontrib><creatorcontrib>Ben Amara, Najoua Essoukri</creatorcontrib><title>OLIMP: A Heterogeneous Multimodal Dataset for Advanced Environment Perception</title><title>Electronics (Basel)</title><description>A reliable environment perception is a crucial task for autonomous driving, especially in dense traffic areas. Recent improvements and breakthroughs in scene understanding for intelligent transportation systems are mainly based on deep learning and the fusion of different modalities. In this context, we introduce OLIMP: A heterOgeneous Multimodal Dataset for Advanced EnvIronMent Perception. This is the first public, multimodal and synchronized dataset that includes UWB radar data, acoustic data, narrow-band radar data and images. OLIMP comprises 407 scenes and 47,354 synchronized frames, presenting four categories: pedestrian, cyclist, car and tram. The dataset includes various challenges related to dense urban traffic such as cluttered environment and different weather conditions. To demonstrate the usefulness of the introduced dataset, we propose a fusion framework that combines the four modalities for multi object detection. The obtained results are promising and spur for future research.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Networking and Internet Architecture</subject><subject>Signal and Image processing</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNplkE9LAzEQxYMoWGq_gKdcPazO5s9m422ptS1saQ96XmIyqyvbTUnSgt_elooIvss8Hr-ZgUfIbQ73nGt4wB5tCn7obNQgQBZwQUYMlM400-zyj78mkxg_4Sid85LDiKzW9XK1eaQVXWDC4N9xQL-PdLXvU7f1zvT0ySQTMdHWB1q5gxksOjobDt3x5RaHRDcYLO5S54cbctWaPuLkZ47J6_PsZbrI6vV8Oa3qzHImU4YSSiZUUShnSo1SM5O3AKpkhUBWaqNaoaR1yqHgVrs3paRiWjKtlQEm-Jjcne9-mL7ZhW5rwlfjTdcsqro5ZcBzAQVTh_zIsjNrg48xYPu7kENz6q_53x__BlpNZKE</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Mimouna, Amira</creator><creator>Alouani, Ihsen</creator><creator>Ben Khalifa, Anouar</creator><creator>El Hillali, Yassin</creator><creator>Taleb-Ahmed, Abdelmalik</creator><creator>Menhaj, Atika</creator><creator>Ouahabi, Abdeldjalil</creator><creator>Ben Amara, Najoua Essoukri</creator><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5102-8087</orcidid><orcidid>https://orcid.org/0000-0002-9946-0829</orcidid><orcidid>https://orcid.org/0000-0001-7218-3799</orcidid><orcidid>https://orcid.org/0000-0002-6392-7693</orcidid><orcidid>https://orcid.org/0000-0002-6145-8475</orcidid><orcidid>https://orcid.org/0000-0001-8750-1905</orcidid><orcidid>https://orcid.org/0000-0003-3658-643X</orcidid><orcidid>https://orcid.org/0000-0002-3980-9902</orcidid></search><sort><creationdate>20200401</creationdate><title>OLIMP: A Heterogeneous Multimodal Dataset for Advanced Environment Perception</title><author>Mimouna, Amira ; Alouani, Ihsen ; Ben Khalifa, Anouar ; El Hillali, Yassin ; Taleb-Ahmed, Abdelmalik ; Menhaj, Atika ; Ouahabi, Abdeldjalil ; Ben Amara, Najoua Essoukri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-e508247667da89e592a1f0078264e289a7f475cd7de43c9db77572952997a0243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Networking and Internet Architecture</topic><topic>Signal and Image processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mimouna, Amira</creatorcontrib><creatorcontrib>Alouani, Ihsen</creatorcontrib><creatorcontrib>Ben Khalifa, Anouar</creatorcontrib><creatorcontrib>El Hillali, Yassin</creatorcontrib><creatorcontrib>Taleb-Ahmed, Abdelmalik</creatorcontrib><creatorcontrib>Menhaj, Atika</creatorcontrib><creatorcontrib>Ouahabi, Abdeldjalil</creatorcontrib><creatorcontrib>Ben Amara, Najoua Essoukri</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mimouna, Amira</au><au>Alouani, Ihsen</au><au>Ben Khalifa, Anouar</au><au>El Hillali, Yassin</au><au>Taleb-Ahmed, Abdelmalik</au><au>Menhaj, Atika</au><au>Ouahabi, Abdeldjalil</au><au>Ben Amara, Najoua Essoukri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OLIMP: A Heterogeneous Multimodal Dataset for Advanced Environment Perception</atitle><jtitle>Electronics (Basel)</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>9</volume><issue>4</issue><spage>560</spage><pages>560-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>A reliable environment perception is a crucial task for autonomous driving, especially in dense traffic areas. Recent improvements and breakthroughs in scene understanding for intelligent transportation systems are mainly based on deep learning and the fusion of different modalities. In this context, we introduce OLIMP: A heterOgeneous Multimodal Dataset for Advanced EnvIronMent Perception. This is the first public, multimodal and synchronized dataset that includes UWB radar data, acoustic data, narrow-band radar data and images. OLIMP comprises 407 scenes and 47,354 synchronized frames, presenting four categories: pedestrian, cyclist, car and tram. The dataset includes various challenges related to dense urban traffic such as cluttered environment and different weather conditions. To demonstrate the usefulness of the introduced dataset, we propose a fusion framework that combines the four modalities for multi object detection. The obtained results are promising and spur for future research.</abstract><pub>MDPI</pub><doi>10.3390/electronics9040560</doi><orcidid>https://orcid.org/0000-0001-5102-8087</orcidid><orcidid>https://orcid.org/0000-0002-9946-0829</orcidid><orcidid>https://orcid.org/0000-0001-7218-3799</orcidid><orcidid>https://orcid.org/0000-0002-6392-7693</orcidid><orcidid>https://orcid.org/0000-0002-6145-8475</orcidid><orcidid>https://orcid.org/0000-0001-8750-1905</orcidid><orcidid>https://orcid.org/0000-0003-3658-643X</orcidid><orcidid>https://orcid.org/0000-0002-3980-9902</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2020-04, Vol.9 (4), p.560 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03140627v1 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial Intelligence Computer Science Electronics Engineering Sciences Networking and Internet Architecture Signal and Image processing |
title | OLIMP: A Heterogeneous Multimodal Dataset for Advanced Environment Perception |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A44%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OLIMP:%20A%20Heterogeneous%20Multimodal%20Dataset%20for%20Advanced%20Environment%20Perception&rft.jtitle=Electronics%20(Basel)&rft.au=Mimouna,%20Amira&rft.date=2020-04-01&rft.volume=9&rft.issue=4&rft.spage=560&rft.pages=560-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics9040560&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03140627v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |