The convexification effect of Minkowski summation
Let us define for a compact set $A \subset \mathbb{R}^n$ the sequence $$ A(k) = \left\{\frac{a_1+\cdots +a_k}{k}: a_1, \ldots, a_k\in A\right\}=\frac{1}{k}\Big(\underset{k\ {\rm times}}{\underbrace{A + \cdots + A}}\Big). $$ It was independently proved by Shapley, Folkman and Starr (1969) and by Emer...
Gespeichert in:
Veröffentlicht in: | EMS surveys in mathematical sciences 2018-01, Vol.5 (1), p.1-64 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!