Catalyst Design for Alkene Epoxidation by Molecular Analogues of Heterogeneous Titanium-Silicalite Catalysts

The epoxidation of allylic alcohols with H2O2 catalyzed by the hybrid [α-B-SbW9O33( t BuSiO)3Ti­(OiPr)]3– (1) anion as a molecular model of heterogeneous Ti-silicalite TS-1 catalyst was analyzed by means of DFT to determine the main factors that control the catalytic process and, finally, to improve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2020-04, Vol.10 (8), p.4737-4750
Hauptverfasser: Solé-Daura, Albert, Zhang, Teng, Fouilloux, Hugo, Robert, Carine, Thomas, Christophe M, Chamoreau, Lise-Marie, Carbó, Jorge J, Proust, Anna, Guillemot, Geoffroy, Poblet, Josep M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4750
container_issue 8
container_start_page 4737
container_title ACS catalysis
container_volume 10
creator Solé-Daura, Albert
Zhang, Teng
Fouilloux, Hugo
Robert, Carine
Thomas, Christophe M
Chamoreau, Lise-Marie
Carbó, Jorge J
Proust, Anna
Guillemot, Geoffroy
Poblet, Josep M
description The epoxidation of allylic alcohols with H2O2 catalyzed by the hybrid [α-B-SbW9O33( t BuSiO)3Ti­(OiPr)]3– (1) anion as a molecular model of heterogeneous Ti-silicalite TS-1 catalyst was analyzed by means of DFT to determine the main factors that control the catalytic process and, finally, to improve the value of the available catalysts. Our calculations revealed that unlike other alkenes, allylic alcohols can bind the Ti center after activation of the precatalyst via hydrolysis to give the corresponding Ti-alcoholate, which is the catalyst resting state. Next, the dissociative addition of hydrogen peroxide to Ti causes the cleavage of a Ti–OSi junction to form a Ti­(η2-OOH) moiety. The partial detachment of the Ti from the catalyst structure yields an intermediate with a flexible Ti center from which the Ti-OOH group can transfer an electrophilic oxygen to the alkene substrate in an inner-sphere fashion. The rate-determining process, which involves the heterolytic activation of H2O2 over the Ti­(IV) and the electrophilic O-transfer, accounts for an overall free-energy barrier of 23.0 kcal mol–1 for 2-methyl-2-buten-1-ol, in line with the experimental value of 22.3. Conversely, the outer-sphere O-transferalso accessible to nonfunctionalized alkenesoccurs through a more strained transition state that lays above in energy (by ∼4 kcal mol–1), giving a clue to explain the low yields reported experimentally for nonfunctionalized olefins. We also found that reducing the bulkiness of the substituents in the silanol functions of the catalyst has a positive influence on the catalytic activity, decreasing the overall free-energy barriers for the outer-sphere path. With this knowledge, we developed other catalytic species with tailored steric properties based on [SbW9O33(RSiOH)3]3– structure (R = i Pr and n Pr), which were synthesized, characterized, and successfully applied to the catalytic epoxidation of unfunctionalized alkenes. Present results clearly show that the detailed knowledge of the reaction mechanisms, even for complex processes, is possible nowadays and that the acquired information allows designing catalysts with desired activities.
doi_str_mv 10.1021/acscatal.9b05147
format Article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03133039v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d281399823</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-544d1f1f6113d93ab7c05bd263f742193263eb0ed84ff9f28c5fd5e47bfa5bbd3</originalsourceid><addsrcrecordid>eNp1kEFPAjEQhRujiQS5e-zVxMV227LskSCCCcaDeG6m3RaLZUu2u0b-vSWA8eJcZjLzvpnJQ-iWkiElOX0AHTW04IelIoLy4gL1cipEJjgTl3_qazSIcUNScDEaF6SH_PTA7WOLH0106xrb0OCJ_zS1wbNd-HYVtC7UWO3xS_BGdx7SvAYf1p2JOFi8MK1pwjoBoYt45VqoXbfN3px3GrxrDT6fiDfoyoKPZnDKffT-NFtNF9nydf48nSwzYJS36VNeUUvtiFJWlQxUoYlQVT5ituA5LVmqjCKmGnNrS5uPtbCVMLxQFoRSFeuju-PeD_By17gtNHsZwMnFZCkPPcIoY4SVXzRpyVGrmxBjY-wvQIk8mCvP5sqTuQm5PyJpIjeha5Id8X_5D7r0f1c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Catalyst Design for Alkene Epoxidation by Molecular Analogues of Heterogeneous Titanium-Silicalite Catalysts</title><source>American Chemical Society Journals</source><creator>Solé-Daura, Albert ; Zhang, Teng ; Fouilloux, Hugo ; Robert, Carine ; Thomas, Christophe M ; Chamoreau, Lise-Marie ; Carbó, Jorge J ; Proust, Anna ; Guillemot, Geoffroy ; Poblet, Josep M</creator><creatorcontrib>Solé-Daura, Albert ; Zhang, Teng ; Fouilloux, Hugo ; Robert, Carine ; Thomas, Christophe M ; Chamoreau, Lise-Marie ; Carbó, Jorge J ; Proust, Anna ; Guillemot, Geoffroy ; Poblet, Josep M</creatorcontrib><description>The epoxidation of allylic alcohols with H2O2 catalyzed by the hybrid [α-B-SbW9O33( t BuSiO)3Ti­(OiPr)]3– (1) anion as a molecular model of heterogeneous Ti-silicalite TS-1 catalyst was analyzed by means of DFT to determine the main factors that control the catalytic process and, finally, to improve the value of the available catalysts. Our calculations revealed that unlike other alkenes, allylic alcohols can bind the Ti center after activation of the precatalyst via hydrolysis to give the corresponding Ti-alcoholate, which is the catalyst resting state. Next, the dissociative addition of hydrogen peroxide to Ti causes the cleavage of a Ti–OSi junction to form a Ti­(η2-OOH) moiety. The partial detachment of the Ti from the catalyst structure yields an intermediate with a flexible Ti center from which the Ti-OOH group can transfer an electrophilic oxygen to the alkene substrate in an inner-sphere fashion. The rate-determining process, which involves the heterolytic activation of H2O2 over the Ti­(IV) and the electrophilic O-transfer, accounts for an overall free-energy barrier of 23.0 kcal mol–1 for 2-methyl-2-buten-1-ol, in line with the experimental value of 22.3. Conversely, the outer-sphere O-transferalso accessible to nonfunctionalized alkenesoccurs through a more strained transition state that lays above in energy (by ∼4 kcal mol–1), giving a clue to explain the low yields reported experimentally for nonfunctionalized olefins. We also found that reducing the bulkiness of the substituents in the silanol functions of the catalyst has a positive influence on the catalytic activity, decreasing the overall free-energy barriers for the outer-sphere path. With this knowledge, we developed other catalytic species with tailored steric properties based on [SbW9O33(RSiOH)3]3– structure (R = i Pr and n Pr), which were synthesized, characterized, and successfully applied to the catalytic epoxidation of unfunctionalized alkenes. Present results clearly show that the detailed knowledge of the reaction mechanisms, even for complex processes, is possible nowadays and that the acquired information allows designing catalysts with desired activities.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.9b05147</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences</subject><ispartof>ACS catalysis, 2020-04, Vol.10 (8), p.4737-4750</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-544d1f1f6113d93ab7c05bd263f742193263eb0ed84ff9f28c5fd5e47bfa5bbd3</citedby><cites>FETCH-LOGICAL-a314t-544d1f1f6113d93ab7c05bd263f742193263eb0ed84ff9f28c5fd5e47bfa5bbd3</cites><orcidid>0000-0001-8014-4255 ; 0000-0002-2711-8514 ; 0000-0002-0903-6507 ; 0000-0002-3945-6721 ; 0000-0002-3781-3107 ; 0000-0002-9755-7459 ; 0000-0002-4533-0623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.9b05147$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.9b05147$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03133039$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Solé-Daura, Albert</creatorcontrib><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Fouilloux, Hugo</creatorcontrib><creatorcontrib>Robert, Carine</creatorcontrib><creatorcontrib>Thomas, Christophe M</creatorcontrib><creatorcontrib>Chamoreau, Lise-Marie</creatorcontrib><creatorcontrib>Carbó, Jorge J</creatorcontrib><creatorcontrib>Proust, Anna</creatorcontrib><creatorcontrib>Guillemot, Geoffroy</creatorcontrib><creatorcontrib>Poblet, Josep M</creatorcontrib><title>Catalyst Design for Alkene Epoxidation by Molecular Analogues of Heterogeneous Titanium-Silicalite Catalysts</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>The epoxidation of allylic alcohols with H2O2 catalyzed by the hybrid [α-B-SbW9O33( t BuSiO)3Ti­(OiPr)]3– (1) anion as a molecular model of heterogeneous Ti-silicalite TS-1 catalyst was analyzed by means of DFT to determine the main factors that control the catalytic process and, finally, to improve the value of the available catalysts. Our calculations revealed that unlike other alkenes, allylic alcohols can bind the Ti center after activation of the precatalyst via hydrolysis to give the corresponding Ti-alcoholate, which is the catalyst resting state. Next, the dissociative addition of hydrogen peroxide to Ti causes the cleavage of a Ti–OSi junction to form a Ti­(η2-OOH) moiety. The partial detachment of the Ti from the catalyst structure yields an intermediate with a flexible Ti center from which the Ti-OOH group can transfer an electrophilic oxygen to the alkene substrate in an inner-sphere fashion. The rate-determining process, which involves the heterolytic activation of H2O2 over the Ti­(IV) and the electrophilic O-transfer, accounts for an overall free-energy barrier of 23.0 kcal mol–1 for 2-methyl-2-buten-1-ol, in line with the experimental value of 22.3. Conversely, the outer-sphere O-transferalso accessible to nonfunctionalized alkenesoccurs through a more strained transition state that lays above in energy (by ∼4 kcal mol–1), giving a clue to explain the low yields reported experimentally for nonfunctionalized olefins. We also found that reducing the bulkiness of the substituents in the silanol functions of the catalyst has a positive influence on the catalytic activity, decreasing the overall free-energy barriers for the outer-sphere path. With this knowledge, we developed other catalytic species with tailored steric properties based on [SbW9O33(RSiOH)3]3– structure (R = i Pr and n Pr), which were synthesized, characterized, and successfully applied to the catalytic epoxidation of unfunctionalized alkenes. Present results clearly show that the detailed knowledge of the reaction mechanisms, even for complex processes, is possible nowadays and that the acquired information allows designing catalysts with desired activities.</description><subject>Chemical Sciences</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPAjEQhRujiQS5e-zVxMV227LskSCCCcaDeG6m3RaLZUu2u0b-vSWA8eJcZjLzvpnJQ-iWkiElOX0AHTW04IelIoLy4gL1cipEJjgTl3_qazSIcUNScDEaF6SH_PTA7WOLH0106xrb0OCJ_zS1wbNd-HYVtC7UWO3xS_BGdx7SvAYf1p2JOFi8MK1pwjoBoYt45VqoXbfN3px3GrxrDT6fiDfoyoKPZnDKffT-NFtNF9nydf48nSwzYJS36VNeUUvtiFJWlQxUoYlQVT5ituA5LVmqjCKmGnNrS5uPtbCVMLxQFoRSFeuju-PeD_By17gtNHsZwMnFZCkPPcIoY4SVXzRpyVGrmxBjY-wvQIk8mCvP5sqTuQm5PyJpIjeha5Id8X_5D7r0f1c</recordid><startdate>20200417</startdate><enddate>20200417</enddate><creator>Solé-Daura, Albert</creator><creator>Zhang, Teng</creator><creator>Fouilloux, Hugo</creator><creator>Robert, Carine</creator><creator>Thomas, Christophe M</creator><creator>Chamoreau, Lise-Marie</creator><creator>Carbó, Jorge J</creator><creator>Proust, Anna</creator><creator>Guillemot, Geoffroy</creator><creator>Poblet, Josep M</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8014-4255</orcidid><orcidid>https://orcid.org/0000-0002-2711-8514</orcidid><orcidid>https://orcid.org/0000-0002-0903-6507</orcidid><orcidid>https://orcid.org/0000-0002-3945-6721</orcidid><orcidid>https://orcid.org/0000-0002-3781-3107</orcidid><orcidid>https://orcid.org/0000-0002-9755-7459</orcidid><orcidid>https://orcid.org/0000-0002-4533-0623</orcidid></search><sort><creationdate>20200417</creationdate><title>Catalyst Design for Alkene Epoxidation by Molecular Analogues of Heterogeneous Titanium-Silicalite Catalysts</title><author>Solé-Daura, Albert ; Zhang, Teng ; Fouilloux, Hugo ; Robert, Carine ; Thomas, Christophe M ; Chamoreau, Lise-Marie ; Carbó, Jorge J ; Proust, Anna ; Guillemot, Geoffroy ; Poblet, Josep M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-544d1f1f6113d93ab7c05bd263f742193263eb0ed84ff9f28c5fd5e47bfa5bbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solé-Daura, Albert</creatorcontrib><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Fouilloux, Hugo</creatorcontrib><creatorcontrib>Robert, Carine</creatorcontrib><creatorcontrib>Thomas, Christophe M</creatorcontrib><creatorcontrib>Chamoreau, Lise-Marie</creatorcontrib><creatorcontrib>Carbó, Jorge J</creatorcontrib><creatorcontrib>Proust, Anna</creatorcontrib><creatorcontrib>Guillemot, Geoffroy</creatorcontrib><creatorcontrib>Poblet, Josep M</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solé-Daura, Albert</au><au>Zhang, Teng</au><au>Fouilloux, Hugo</au><au>Robert, Carine</au><au>Thomas, Christophe M</au><au>Chamoreau, Lise-Marie</au><au>Carbó, Jorge J</au><au>Proust, Anna</au><au>Guillemot, Geoffroy</au><au>Poblet, Josep M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalyst Design for Alkene Epoxidation by Molecular Analogues of Heterogeneous Titanium-Silicalite Catalysts</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2020-04-17</date><risdate>2020</risdate><volume>10</volume><issue>8</issue><spage>4737</spage><epage>4750</epage><pages>4737-4750</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>The epoxidation of allylic alcohols with H2O2 catalyzed by the hybrid [α-B-SbW9O33( t BuSiO)3Ti­(OiPr)]3– (1) anion as a molecular model of heterogeneous Ti-silicalite TS-1 catalyst was analyzed by means of DFT to determine the main factors that control the catalytic process and, finally, to improve the value of the available catalysts. Our calculations revealed that unlike other alkenes, allylic alcohols can bind the Ti center after activation of the precatalyst via hydrolysis to give the corresponding Ti-alcoholate, which is the catalyst resting state. Next, the dissociative addition of hydrogen peroxide to Ti causes the cleavage of a Ti–OSi junction to form a Ti­(η2-OOH) moiety. The partial detachment of the Ti from the catalyst structure yields an intermediate with a flexible Ti center from which the Ti-OOH group can transfer an electrophilic oxygen to the alkene substrate in an inner-sphere fashion. The rate-determining process, which involves the heterolytic activation of H2O2 over the Ti­(IV) and the electrophilic O-transfer, accounts for an overall free-energy barrier of 23.0 kcal mol–1 for 2-methyl-2-buten-1-ol, in line with the experimental value of 22.3. Conversely, the outer-sphere O-transferalso accessible to nonfunctionalized alkenesoccurs through a more strained transition state that lays above in energy (by ∼4 kcal mol–1), giving a clue to explain the low yields reported experimentally for nonfunctionalized olefins. We also found that reducing the bulkiness of the substituents in the silanol functions of the catalyst has a positive influence on the catalytic activity, decreasing the overall free-energy barriers for the outer-sphere path. With this knowledge, we developed other catalytic species with tailored steric properties based on [SbW9O33(RSiOH)3]3– structure (R = i Pr and n Pr), which were synthesized, characterized, and successfully applied to the catalytic epoxidation of unfunctionalized alkenes. Present results clearly show that the detailed knowledge of the reaction mechanisms, even for complex processes, is possible nowadays and that the acquired information allows designing catalysts with desired activities.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.9b05147</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8014-4255</orcidid><orcidid>https://orcid.org/0000-0002-2711-8514</orcidid><orcidid>https://orcid.org/0000-0002-0903-6507</orcidid><orcidid>https://orcid.org/0000-0002-3945-6721</orcidid><orcidid>https://orcid.org/0000-0002-3781-3107</orcidid><orcidid>https://orcid.org/0000-0002-9755-7459</orcidid><orcidid>https://orcid.org/0000-0002-4533-0623</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2020-04, Vol.10 (8), p.4737-4750
issn 2155-5435
2155-5435
language eng
recordid cdi_hal_primary_oai_HAL_hal_03133039v1
source American Chemical Society Journals
subjects Chemical Sciences
title Catalyst Design for Alkene Epoxidation by Molecular Analogues of Heterogeneous Titanium-Silicalite Catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalyst%20Design%20for%20Alkene%20Epoxidation%20by%20Molecular%20Analogues%20of%20Heterogeneous%20Titanium-Silicalite%20Catalysts&rft.jtitle=ACS%20catalysis&rft.au=Sole%CC%81-Daura,%20Albert&rft.date=2020-04-17&rft.volume=10&rft.issue=8&rft.spage=4737&rft.epage=4750&rft.pages=4737-4750&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.9b05147&rft_dat=%3Cacs_hal_p%3Ed281399823%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true