Multiplex‐multiphoton microscopy and computational strategy for biomedical imaging
We demonstrate the benefit of a novel laser strategy in multiphoton microscopy (MPM). The cheap, simple, and turn‐key supercontinuum laser system with its spectral shaping module, constitutes an ideal approach for the one‐shot microscopic imaging of many fluorophores without modification of the exci...
Gespeichert in:
Veröffentlicht in: | Microscopy research and technique 2021-07, Vol.84 (7), p.1553-1562 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1562 |
---|---|
container_issue | 7 |
container_start_page | 1553 |
container_title | Microscopy research and technique |
container_volume | 84 |
creator | Hortholary, Thomas Carrion, Claire Chouzenoux, Emilie Pesquet, Jean‐Christophe Lefort, Claire |
description | We demonstrate the benefit of a novel laser strategy in multiphoton microscopy (MPM). The cheap, simple, and turn‐key supercontinuum laser system with its spectral shaping module, constitutes an ideal approach for the one‐shot microscopic imaging of many fluorophores without modification of the excitation parameters: central wavelength, spectral bandwidth, and average power. The polyvalence of the resulting multiplex‐multiphoton microscopy (M‐MPM) device is illustrated by images of many biomedical models from several origins (biological, medical, or vegetal), generated while keeping constant the spectral parameters of excitation. The resolution of the M‐MPM device is quantified by a procedure of point‐spread‐function (PSF) assessment led by an original, robust, and reliable computational approach FIGARO. The estimated values for the PSF width for our M‐MPM system are shown to be comparable to standard values found in optical microscopy. The simplification of the excitation system constitutes a significant instrumental progress in biomedical MPM, paving the way to the imaging of many fluorophores with a single shot of excitation without any modification of the lighting device.
Research Highlights
A new solution of multiplex‐multiphoton microscopy device is shown, resting on a supercontinuum laser. The one‐shot excitation device has imaged biomedical and vegetal models. Our original computational strategy measures usual microscopy resolution.
Experimental setup of the multiplex‐multiphoton microscopy device with a supercontinuum laser system and its spectral shaping module (a,b) for multiphoton imaging of samples from life sciences (c) combined with our original computational strategy for point‐spread‐function assessment (d). |
doi_str_mv | 10.1002/jemt.23712 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03126396v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480753587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4272-4c12771408d7125048f8b68763eb47f885160a775bc60af73853bb854894d60a3</originalsourceid><addsrcrecordid>eNp9kb1OwzAUhS0EolBYeAAUiQWQUuzYjp0RIX5VxFIkNstJnOIqiYOdAN14BJ6RJ8FpCgMD0706-nR8fA8ABwhOEITR2UJV7STCDEUbYAfBhIVeTTb7nSZhguDTCOw6t4AQIYrINhhhTBLEMdsBs_uubHVTqvevj89qtT-b1tRBpTNrXGaaZSDrPMhM1XStbLWpZRm41spWzZdBYWyQalOpXGde15Wc63q-B7YKWTq1v55j8Hh1Obu4CacP17cX59MwIxGLQpKhiDFEIM99dgoJL3gacxZjlRJWcE5RDCVjNM38LBjmFKcpp4QnJPcKHoOTwfdZlqKx_nW7FEZqcXM-Fb0GMYpinMSvyLPHA9tY89Ip14pKu0yVpayV6ZyICIeMYsqZR4_-oAvTWf9vT1FCPBj7jGNwOlD9nZxVxW8CBEXfi-h7EatePHy4tuxSf6xf9KcID6ABeNOlWv5jJe4u72eD6Tfb45d6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544480676</pqid></control><display><type>article</type><title>Multiplex‐multiphoton microscopy and computational strategy for biomedical imaging</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hortholary, Thomas ; Carrion, Claire ; Chouzenoux, Emilie ; Pesquet, Jean‐Christophe ; Lefort, Claire</creator><creatorcontrib>Hortholary, Thomas ; Carrion, Claire ; Chouzenoux, Emilie ; Pesquet, Jean‐Christophe ; Lefort, Claire</creatorcontrib><description>We demonstrate the benefit of a novel laser strategy in multiphoton microscopy (MPM). The cheap, simple, and turn‐key supercontinuum laser system with its spectral shaping module, constitutes an ideal approach for the one‐shot microscopic imaging of many fluorophores without modification of the excitation parameters: central wavelength, spectral bandwidth, and average power. The polyvalence of the resulting multiplex‐multiphoton microscopy (M‐MPM) device is illustrated by images of many biomedical models from several origins (biological, medical, or vegetal), generated while keeping constant the spectral parameters of excitation. The resolution of the M‐MPM device is quantified by a procedure of point‐spread‐function (PSF) assessment led by an original, robust, and reliable computational approach FIGARO. The estimated values for the PSF width for our M‐MPM system are shown to be comparable to standard values found in optical microscopy. The simplification of the excitation system constitutes a significant instrumental progress in biomedical MPM, paving the way to the imaging of many fluorophores with a single shot of excitation without any modification of the lighting device.
Research Highlights
A new solution of multiplex‐multiphoton microscopy device is shown, resting on a supercontinuum laser. The one‐shot excitation device has imaged biomedical and vegetal models. Our original computational strategy measures usual microscopy resolution.
Experimental setup of the multiplex‐multiphoton microscopy device with a supercontinuum laser system and its spectral shaping module (a,b) for multiphoton imaging of samples from life sciences (c) combined with our original computational strategy for point‐spread‐function assessment (d).</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.23712</identifier><identifier>PMID: 33491837</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Bioengineering ; biomedical imaging ; Chemical compounds ; computational strategy ; Computer applications ; Computer Science ; Excitation spectra ; Fluorescence ; Fluorophores ; Imaging ; Lasers ; Life Sciences ; Light microscopy ; Mathematical models ; Medical Imaging ; Microscopy ; multiphoton microscopy ; Multiplexing ; Optical microscopy ; Parameter modification ; PSF estimation ; supercontinuum lasers</subject><ispartof>Microscopy research and technique, 2021-07, Vol.84 (7), p.1553-1562</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4272-4c12771408d7125048f8b68763eb47f885160a775bc60af73853bb854894d60a3</citedby><cites>FETCH-LOGICAL-c4272-4c12771408d7125048f8b68763eb47f885160a775bc60af73853bb854894d60a3</cites><orcidid>0000-0002-7685-2061 ; 0000-0003-3631-6093 ; 0000-0002-5943-8061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjemt.23712$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjemt.23712$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33491837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03126396$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hortholary, Thomas</creatorcontrib><creatorcontrib>Carrion, Claire</creatorcontrib><creatorcontrib>Chouzenoux, Emilie</creatorcontrib><creatorcontrib>Pesquet, Jean‐Christophe</creatorcontrib><creatorcontrib>Lefort, Claire</creatorcontrib><title>Multiplex‐multiphoton microscopy and computational strategy for biomedical imaging</title><title>Microscopy research and technique</title><addtitle>Microsc Res Tech</addtitle><description>We demonstrate the benefit of a novel laser strategy in multiphoton microscopy (MPM). The cheap, simple, and turn‐key supercontinuum laser system with its spectral shaping module, constitutes an ideal approach for the one‐shot microscopic imaging of many fluorophores without modification of the excitation parameters: central wavelength, spectral bandwidth, and average power. The polyvalence of the resulting multiplex‐multiphoton microscopy (M‐MPM) device is illustrated by images of many biomedical models from several origins (biological, medical, or vegetal), generated while keeping constant the spectral parameters of excitation. The resolution of the M‐MPM device is quantified by a procedure of point‐spread‐function (PSF) assessment led by an original, robust, and reliable computational approach FIGARO. The estimated values for the PSF width for our M‐MPM system are shown to be comparable to standard values found in optical microscopy. The simplification of the excitation system constitutes a significant instrumental progress in biomedical MPM, paving the way to the imaging of many fluorophores with a single shot of excitation without any modification of the lighting device.
Research Highlights
A new solution of multiplex‐multiphoton microscopy device is shown, resting on a supercontinuum laser. The one‐shot excitation device has imaged biomedical and vegetal models. Our original computational strategy measures usual microscopy resolution.
Experimental setup of the multiplex‐multiphoton microscopy device with a supercontinuum laser system and its spectral shaping module (a,b) for multiphoton imaging of samples from life sciences (c) combined with our original computational strategy for point‐spread‐function assessment (d).</description><subject>Bioengineering</subject><subject>biomedical imaging</subject><subject>Chemical compounds</subject><subject>computational strategy</subject><subject>Computer applications</subject><subject>Computer Science</subject><subject>Excitation spectra</subject><subject>Fluorescence</subject><subject>Fluorophores</subject><subject>Imaging</subject><subject>Lasers</subject><subject>Life Sciences</subject><subject>Light microscopy</subject><subject>Mathematical models</subject><subject>Medical Imaging</subject><subject>Microscopy</subject><subject>multiphoton microscopy</subject><subject>Multiplexing</subject><subject>Optical microscopy</subject><subject>Parameter modification</subject><subject>PSF estimation</subject><subject>supercontinuum lasers</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kb1OwzAUhS0EolBYeAAUiQWQUuzYjp0RIX5VxFIkNstJnOIqiYOdAN14BJ6RJ8FpCgMD0706-nR8fA8ABwhOEITR2UJV7STCDEUbYAfBhIVeTTb7nSZhguDTCOw6t4AQIYrINhhhTBLEMdsBs_uubHVTqvevj89qtT-b1tRBpTNrXGaaZSDrPMhM1XStbLWpZRm41spWzZdBYWyQalOpXGde15Wc63q-B7YKWTq1v55j8Hh1Obu4CacP17cX59MwIxGLQpKhiDFEIM99dgoJL3gacxZjlRJWcE5RDCVjNM38LBjmFKcpp4QnJPcKHoOTwfdZlqKx_nW7FEZqcXM-Fb0GMYpinMSvyLPHA9tY89Ip14pKu0yVpayV6ZyICIeMYsqZR4_-oAvTWf9vT1FCPBj7jGNwOlD9nZxVxW8CBEXfi-h7EatePHy4tuxSf6xf9KcID6ABeNOlWv5jJe4u72eD6Tfb45d6</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Hortholary, Thomas</creator><creator>Carrion, Claire</creator><creator>Chouzenoux, Emilie</creator><creator>Pesquet, Jean‐Christophe</creator><creator>Lefort, Claire</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7685-2061</orcidid><orcidid>https://orcid.org/0000-0003-3631-6093</orcidid><orcidid>https://orcid.org/0000-0002-5943-8061</orcidid></search><sort><creationdate>202107</creationdate><title>Multiplex‐multiphoton microscopy and computational strategy for biomedical imaging</title><author>Hortholary, Thomas ; Carrion, Claire ; Chouzenoux, Emilie ; Pesquet, Jean‐Christophe ; Lefort, Claire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4272-4c12771408d7125048f8b68763eb47f885160a775bc60af73853bb854894d60a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioengineering</topic><topic>biomedical imaging</topic><topic>Chemical compounds</topic><topic>computational strategy</topic><topic>Computer applications</topic><topic>Computer Science</topic><topic>Excitation spectra</topic><topic>Fluorescence</topic><topic>Fluorophores</topic><topic>Imaging</topic><topic>Lasers</topic><topic>Life Sciences</topic><topic>Light microscopy</topic><topic>Mathematical models</topic><topic>Medical Imaging</topic><topic>Microscopy</topic><topic>multiphoton microscopy</topic><topic>Multiplexing</topic><topic>Optical microscopy</topic><topic>Parameter modification</topic><topic>PSF estimation</topic><topic>supercontinuum lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hortholary, Thomas</creatorcontrib><creatorcontrib>Carrion, Claire</creatorcontrib><creatorcontrib>Chouzenoux, Emilie</creatorcontrib><creatorcontrib>Pesquet, Jean‐Christophe</creatorcontrib><creatorcontrib>Lefort, Claire</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hortholary, Thomas</au><au>Carrion, Claire</au><au>Chouzenoux, Emilie</au><au>Pesquet, Jean‐Christophe</au><au>Lefort, Claire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplex‐multiphoton microscopy and computational strategy for biomedical imaging</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc Res Tech</addtitle><date>2021-07</date><risdate>2021</risdate><volume>84</volume><issue>7</issue><spage>1553</spage><epage>1562</epage><pages>1553-1562</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>We demonstrate the benefit of a novel laser strategy in multiphoton microscopy (MPM). The cheap, simple, and turn‐key supercontinuum laser system with its spectral shaping module, constitutes an ideal approach for the one‐shot microscopic imaging of many fluorophores without modification of the excitation parameters: central wavelength, spectral bandwidth, and average power. The polyvalence of the resulting multiplex‐multiphoton microscopy (M‐MPM) device is illustrated by images of many biomedical models from several origins (biological, medical, or vegetal), generated while keeping constant the spectral parameters of excitation. The resolution of the M‐MPM device is quantified by a procedure of point‐spread‐function (PSF) assessment led by an original, robust, and reliable computational approach FIGARO. The estimated values for the PSF width for our M‐MPM system are shown to be comparable to standard values found in optical microscopy. The simplification of the excitation system constitutes a significant instrumental progress in biomedical MPM, paving the way to the imaging of many fluorophores with a single shot of excitation without any modification of the lighting device.
Research Highlights
A new solution of multiplex‐multiphoton microscopy device is shown, resting on a supercontinuum laser. The one‐shot excitation device has imaged biomedical and vegetal models. Our original computational strategy measures usual microscopy resolution.
Experimental setup of the multiplex‐multiphoton microscopy device with a supercontinuum laser system and its spectral shaping module (a,b) for multiphoton imaging of samples from life sciences (c) combined with our original computational strategy for point‐spread‐function assessment (d).</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>33491837</pmid><doi>10.1002/jemt.23712</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7685-2061</orcidid><orcidid>https://orcid.org/0000-0003-3631-6093</orcidid><orcidid>https://orcid.org/0000-0002-5943-8061</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-910X |
ispartof | Microscopy research and technique, 2021-07, Vol.84 (7), p.1553-1562 |
issn | 1059-910X 1097-0029 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03126396v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bioengineering biomedical imaging Chemical compounds computational strategy Computer applications Computer Science Excitation spectra Fluorescence Fluorophores Imaging Lasers Life Sciences Light microscopy Mathematical models Medical Imaging Microscopy multiphoton microscopy Multiplexing Optical microscopy Parameter modification PSF estimation supercontinuum lasers |
title | Multiplex‐multiphoton microscopy and computational strategy for biomedical imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplex%E2%80%90multiphoton%20microscopy%20and%20computational%20strategy%20for%20biomedical%20imaging&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Hortholary,%20Thomas&rft.date=2021-07&rft.volume=84&rft.issue=7&rft.spage=1553&rft.epage=1562&rft.pages=1553-1562&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.23712&rft_dat=%3Cproquest_hal_p%3E2480753587%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544480676&rft_id=info:pmid/33491837&rfr_iscdi=true |