Phosphorylated Micro- and Nanocellulose-Filled Chitosan Nanocomposites as Fully Sustainable, Biologically Active Bioplastics
Controlled cellulose fragmentation and its downsizing to micro- and nanocrystals have recently captured tremendous attention to access sustainable nanomaterials. Hitherto, few functionalized cellulose derivatives have been used as fillers, and additional knowledge is needed to establish an accurate...
Gespeichert in:
Veröffentlicht in: | ACS sustainable chemistry & engineering 2020-12, Vol.8 (50), p.18354-18365 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18365 |
---|---|
container_issue | 50 |
container_start_page | 18354 |
container_title | ACS sustainable chemistry & engineering |
container_volume | 8 |
creator | Blilid, Sara Kędzierska, Marta Miłowska, Katarzyna Wrońska, Natalia El Achaby, Mounir Katir, Nadia Belamie, Emmanuel Alonso, Bruno Lisowska, Katarzyna Lahcini, Mohammed Bryszewska, Maria El Kadib, Abdelkrim |
description | Controlled cellulose fragmentation and its downsizing to micro- and nanocrystals have recently captured tremendous attention to access sustainable nanomaterials. Hitherto, few functionalized cellulose derivatives have been used as fillers, and additional knowledge is needed to establish an accurate structure–performance relationship in the realm of sustainable nanocomposites. Herein, a range of phosphorylated microcellulose (MCC) and nanosized cellulose (CNC) have been prepared and used as reinforcing fillers to build transparent and flexible cellulose-filled chitosan nanostructured films. Regardless of their functionalization, all nanocellulose fillers reach good dispersion in the matrix, while those that are microcellulose aggregate slightly inside of the films. Distinctively, improved thermal stability was seen for chitosan films reinforced with cyclotriphosphazene grafted on cellulose nanocrystals (PN-CNC), where only half weight of the bioplastic was decomposed at 700 °C. Moreover, better mechanical properties were obtained using nanocellulose instead of microcellulose as fillers, with PN-CNC-filled chitosan reaching the highest value of 1.649 MPa in tensile modulus compared to 1.195 MPa for neat chitosan films. Phosphorylated cellulose fillers (P-CNC and P-MCC) also bring interesting antibacterial and intercellular catalase activities, compared to neat chitosan and unmodified cellulose-filled chitosan. In total, this study sheds light on the pivotal role of cellulose phosphorylation in improving the thermal, mechanical, and biological properties of the next generation of rationally designed bioplastics. |
doi_str_mv | 10.1021/acssuschemeng.0c04426 |
format | Article |
fullrecord | <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03117242v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b959900474</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-cd37fd686bfa11d37d1efc588779ffcf2da59a186fe259af861af5caab8db0263</originalsourceid><addsrcrecordid>eNqFUEtLw0AQDqJgqf0JQq6Cqbub1-ZYi7VCfYB6DpPNbrNlmw2ZpFDwx7shRfTkXGbmewzM53nXlMwpYfQOBGKPopJ7WW_nRJAoYsmZN2E04QGJeHz-a770Zog74irLQsbpxPt6qyw2lW2PBjpZ-s9atDbwoS79F6itkMb0xqIMVtoYxy8r3VmEemTtvrGoO4k-oL_qjTn67z12oGsojLz177U1dqsFDMxCdPogB6wxgJ0WeOVdKDAoZ6c-9T5XDx_LdbB5fXxaLjYBhCzuAlGGqSoTnhQKKHVLSaUSMedpmiklFCshzoDyREnmBsUTCioWAAUvC8KScOrdjHcrMHnT6j20x9yCzteLTT5gJKQ0ZRE7UKeNR63LAbGV6sdAST4knv9JPD8l7nx09Dk639m-rd1H_3i-AWjFjMo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phosphorylated Micro- and Nanocellulose-Filled Chitosan Nanocomposites as Fully Sustainable, Biologically Active Bioplastics</title><source>ACS Publications</source><creator>Blilid, Sara ; Kędzierska, Marta ; Miłowska, Katarzyna ; Wrońska, Natalia ; El Achaby, Mounir ; Katir, Nadia ; Belamie, Emmanuel ; Alonso, Bruno ; Lisowska, Katarzyna ; Lahcini, Mohammed ; Bryszewska, Maria ; El Kadib, Abdelkrim</creator><creatorcontrib>Blilid, Sara ; Kędzierska, Marta ; Miłowska, Katarzyna ; Wrońska, Natalia ; El Achaby, Mounir ; Katir, Nadia ; Belamie, Emmanuel ; Alonso, Bruno ; Lisowska, Katarzyna ; Lahcini, Mohammed ; Bryszewska, Maria ; El Kadib, Abdelkrim</creatorcontrib><description>Controlled cellulose fragmentation and its downsizing to micro- and nanocrystals have recently captured tremendous attention to access sustainable nanomaterials. Hitherto, few functionalized cellulose derivatives have been used as fillers, and additional knowledge is needed to establish an accurate structure–performance relationship in the realm of sustainable nanocomposites. Herein, a range of phosphorylated microcellulose (MCC) and nanosized cellulose (CNC) have been prepared and used as reinforcing fillers to build transparent and flexible cellulose-filled chitosan nanostructured films. Regardless of their functionalization, all nanocellulose fillers reach good dispersion in the matrix, while those that are microcellulose aggregate slightly inside of the films. Distinctively, improved thermal stability was seen for chitosan films reinforced with cyclotriphosphazene grafted on cellulose nanocrystals (PN-CNC), where only half weight of the bioplastic was decomposed at 700 °C. Moreover, better mechanical properties were obtained using nanocellulose instead of microcellulose as fillers, with PN-CNC-filled chitosan reaching the highest value of 1.649 MPa in tensile modulus compared to 1.195 MPa for neat chitosan films. Phosphorylated cellulose fillers (P-CNC and P-MCC) also bring interesting antibacterial and intercellular catalase activities, compared to neat chitosan and unmodified cellulose-filled chitosan. In total, this study sheds light on the pivotal role of cellulose phosphorylation in improving the thermal, mechanical, and biological properties of the next generation of rationally designed bioplastics.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.0c04426</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences</subject><ispartof>ACS sustainable chemistry & engineering, 2020-12, Vol.8 (50), p.18354-18365</ispartof><rights>2020 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-cd37fd686bfa11d37d1efc588779ffcf2da59a186fe259af861af5caab8db0263</citedby><cites>FETCH-LOGICAL-a325t-cd37fd686bfa11d37d1efc588779ffcf2da59a186fe259af861af5caab8db0263</cites><orcidid>0000-0002-4050-2756 ; 0000-0003-4699-9035 ; 0000-0002-7823-0450 ; 0000-0001-6694-3739 ; 0000-0003-1049-7906 ; 0000-0002-2213-7732 ; 0000-0002-3430-1931 ; 0000-0003-4676-3743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.0c04426$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.0c04426$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://hal.umontpellier.fr/hal-03117242$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Blilid, Sara</creatorcontrib><creatorcontrib>Kędzierska, Marta</creatorcontrib><creatorcontrib>Miłowska, Katarzyna</creatorcontrib><creatorcontrib>Wrońska, Natalia</creatorcontrib><creatorcontrib>El Achaby, Mounir</creatorcontrib><creatorcontrib>Katir, Nadia</creatorcontrib><creatorcontrib>Belamie, Emmanuel</creatorcontrib><creatorcontrib>Alonso, Bruno</creatorcontrib><creatorcontrib>Lisowska, Katarzyna</creatorcontrib><creatorcontrib>Lahcini, Mohammed</creatorcontrib><creatorcontrib>Bryszewska, Maria</creatorcontrib><creatorcontrib>El Kadib, Abdelkrim</creatorcontrib><title>Phosphorylated Micro- and Nanocellulose-Filled Chitosan Nanocomposites as Fully Sustainable, Biologically Active Bioplastics</title><title>ACS sustainable chemistry & engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Controlled cellulose fragmentation and its downsizing to micro- and nanocrystals have recently captured tremendous attention to access sustainable nanomaterials. Hitherto, few functionalized cellulose derivatives have been used as fillers, and additional knowledge is needed to establish an accurate structure–performance relationship in the realm of sustainable nanocomposites. Herein, a range of phosphorylated microcellulose (MCC) and nanosized cellulose (CNC) have been prepared and used as reinforcing fillers to build transparent and flexible cellulose-filled chitosan nanostructured films. Regardless of their functionalization, all nanocellulose fillers reach good dispersion in the matrix, while those that are microcellulose aggregate slightly inside of the films. Distinctively, improved thermal stability was seen for chitosan films reinforced with cyclotriphosphazene grafted on cellulose nanocrystals (PN-CNC), where only half weight of the bioplastic was decomposed at 700 °C. Moreover, better mechanical properties were obtained using nanocellulose instead of microcellulose as fillers, with PN-CNC-filled chitosan reaching the highest value of 1.649 MPa in tensile modulus compared to 1.195 MPa for neat chitosan films. Phosphorylated cellulose fillers (P-CNC and P-MCC) also bring interesting antibacterial and intercellular catalase activities, compared to neat chitosan and unmodified cellulose-filled chitosan. In total, this study sheds light on the pivotal role of cellulose phosphorylation in improving the thermal, mechanical, and biological properties of the next generation of rationally designed bioplastics.</description><subject>Chemical Sciences</subject><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUEtLw0AQDqJgqf0JQq6Cqbub1-ZYi7VCfYB6DpPNbrNlmw2ZpFDwx7shRfTkXGbmewzM53nXlMwpYfQOBGKPopJ7WW_nRJAoYsmZN2E04QGJeHz-a770Zog74irLQsbpxPt6qyw2lW2PBjpZ-s9atDbwoS79F6itkMb0xqIMVtoYxy8r3VmEemTtvrGoO4k-oL_qjTn67z12oGsojLz177U1dqsFDMxCdPogB6wxgJ0WeOVdKDAoZ6c-9T5XDx_LdbB5fXxaLjYBhCzuAlGGqSoTnhQKKHVLSaUSMedpmiklFCshzoDyREnmBsUTCioWAAUvC8KScOrdjHcrMHnT6j20x9yCzteLTT5gJKQ0ZRE7UKeNR63LAbGV6sdAST4knv9JPD8l7nx09Dk639m-rd1H_3i-AWjFjMo</recordid><startdate>20201221</startdate><enddate>20201221</enddate><creator>Blilid, Sara</creator><creator>Kędzierska, Marta</creator><creator>Miłowska, Katarzyna</creator><creator>Wrońska, Natalia</creator><creator>El Achaby, Mounir</creator><creator>Katir, Nadia</creator><creator>Belamie, Emmanuel</creator><creator>Alonso, Bruno</creator><creator>Lisowska, Katarzyna</creator><creator>Lahcini, Mohammed</creator><creator>Bryszewska, Maria</creator><creator>El Kadib, Abdelkrim</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4050-2756</orcidid><orcidid>https://orcid.org/0000-0003-4699-9035</orcidid><orcidid>https://orcid.org/0000-0002-7823-0450</orcidid><orcidid>https://orcid.org/0000-0001-6694-3739</orcidid><orcidid>https://orcid.org/0000-0003-1049-7906</orcidid><orcidid>https://orcid.org/0000-0002-2213-7732</orcidid><orcidid>https://orcid.org/0000-0002-3430-1931</orcidid><orcidid>https://orcid.org/0000-0003-4676-3743</orcidid></search><sort><creationdate>20201221</creationdate><title>Phosphorylated Micro- and Nanocellulose-Filled Chitosan Nanocomposites as Fully Sustainable, Biologically Active Bioplastics</title><author>Blilid, Sara ; Kędzierska, Marta ; Miłowska, Katarzyna ; Wrońska, Natalia ; El Achaby, Mounir ; Katir, Nadia ; Belamie, Emmanuel ; Alonso, Bruno ; Lisowska, Katarzyna ; Lahcini, Mohammed ; Bryszewska, Maria ; El Kadib, Abdelkrim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-cd37fd686bfa11d37d1efc588779ffcf2da59a186fe259af861af5caab8db0263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blilid, Sara</creatorcontrib><creatorcontrib>Kędzierska, Marta</creatorcontrib><creatorcontrib>Miłowska, Katarzyna</creatorcontrib><creatorcontrib>Wrońska, Natalia</creatorcontrib><creatorcontrib>El Achaby, Mounir</creatorcontrib><creatorcontrib>Katir, Nadia</creatorcontrib><creatorcontrib>Belamie, Emmanuel</creatorcontrib><creatorcontrib>Alonso, Bruno</creatorcontrib><creatorcontrib>Lisowska, Katarzyna</creatorcontrib><creatorcontrib>Lahcini, Mohammed</creatorcontrib><creatorcontrib>Bryszewska, Maria</creatorcontrib><creatorcontrib>El Kadib, Abdelkrim</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ACS sustainable chemistry & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blilid, Sara</au><au>Kędzierska, Marta</au><au>Miłowska, Katarzyna</au><au>Wrońska, Natalia</au><au>El Achaby, Mounir</au><au>Katir, Nadia</au><au>Belamie, Emmanuel</au><au>Alonso, Bruno</au><au>Lisowska, Katarzyna</au><au>Lahcini, Mohammed</au><au>Bryszewska, Maria</au><au>El Kadib, Abdelkrim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorylated Micro- and Nanocellulose-Filled Chitosan Nanocomposites as Fully Sustainable, Biologically Active Bioplastics</atitle><jtitle>ACS sustainable chemistry & engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2020-12-21</date><risdate>2020</risdate><volume>8</volume><issue>50</issue><spage>18354</spage><epage>18365</epage><pages>18354-18365</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Controlled cellulose fragmentation and its downsizing to micro- and nanocrystals have recently captured tremendous attention to access sustainable nanomaterials. Hitherto, few functionalized cellulose derivatives have been used as fillers, and additional knowledge is needed to establish an accurate structure–performance relationship in the realm of sustainable nanocomposites. Herein, a range of phosphorylated microcellulose (MCC) and nanosized cellulose (CNC) have been prepared and used as reinforcing fillers to build transparent and flexible cellulose-filled chitosan nanostructured films. Regardless of their functionalization, all nanocellulose fillers reach good dispersion in the matrix, while those that are microcellulose aggregate slightly inside of the films. Distinctively, improved thermal stability was seen for chitosan films reinforced with cyclotriphosphazene grafted on cellulose nanocrystals (PN-CNC), where only half weight of the bioplastic was decomposed at 700 °C. Moreover, better mechanical properties were obtained using nanocellulose instead of microcellulose as fillers, with PN-CNC-filled chitosan reaching the highest value of 1.649 MPa in tensile modulus compared to 1.195 MPa for neat chitosan films. Phosphorylated cellulose fillers (P-CNC and P-MCC) also bring interesting antibacterial and intercellular catalase activities, compared to neat chitosan and unmodified cellulose-filled chitosan. In total, this study sheds light on the pivotal role of cellulose phosphorylation in improving the thermal, mechanical, and biological properties of the next generation of rationally designed bioplastics.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.0c04426</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4050-2756</orcidid><orcidid>https://orcid.org/0000-0003-4699-9035</orcidid><orcidid>https://orcid.org/0000-0002-7823-0450</orcidid><orcidid>https://orcid.org/0000-0001-6694-3739</orcidid><orcidid>https://orcid.org/0000-0003-1049-7906</orcidid><orcidid>https://orcid.org/0000-0002-2213-7732</orcidid><orcidid>https://orcid.org/0000-0002-3430-1931</orcidid><orcidid>https://orcid.org/0000-0003-4676-3743</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-0485 |
ispartof | ACS sustainable chemistry & engineering, 2020-12, Vol.8 (50), p.18354-18365 |
issn | 2168-0485 2168-0485 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03117242v1 |
source | ACS Publications |
subjects | Chemical Sciences |
title | Phosphorylated Micro- and Nanocellulose-Filled Chitosan Nanocomposites as Fully Sustainable, Biologically Active Bioplastics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorylated%20Micro-%20and%20Nanocellulose-Filled%20Chitosan%20Nanocomposites%20as%20Fully%20Sustainable,%20Biologically%20Active%20Bioplastics&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Blilid,%20Sara&rft.date=2020-12-21&rft.volume=8&rft.issue=50&rft.spage=18354&rft.epage=18365&rft.pages=18354-18365&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.0c04426&rft_dat=%3Cacs_hal_p%3Eb959900474%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |