Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance
[Display omitted] This contribution reports the fabrication and characterization of ultrathin films of nanoparticles of the water stable microporous Al tricarboxylate metal organic framework MIL-96(Al). The preparation of MOF dispersions in chloroform has been optimized to obtain dense monolayer fil...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2018-06, Vol.519, p.88-96 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 96 |
---|---|
container_issue | |
container_start_page | 88 |
container_title | Journal of colloid and interface science |
container_volume | 519 |
creator | Andrés, Miguel A. Benzaqui, M. Serre, C. Steunou, N. Gascón, I. |
description | [Display omitted]
This contribution reports the fabrication and characterization of ultrathin films of nanoparticles of the water stable microporous Al tricarboxylate metal organic framework MIL-96(Al). The preparation of MOF dispersions in chloroform has been optimized to obtain dense monolayer films of good quality, without nanoparticle agglomeration, at the air-water interface that can be deposited onto solid substrates of different nature without any previous substrate functionalization. The MOF studied shows great interest for CO2 capture because it presents Al3+ Lewis centers and hydroxyl groups that strongly interact with CO2 molecules. A comparative CO2 adsorption study on drop-cast, Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) films using a Quartz Crystal Microbalance-based setup (QCM) has revealed that the CO2 uptake depends strongly on the film fabrication procedure and the storage conditions. Noteworthy the CO2 adsorption capacity of LB films is increased by 30% using a simple and green treatment (immersion of the film into water during 12 h just after film preparation). Finally, the stability of LB MOF monolayers upon several CO2 adsorption/desorption cycles has been demonstrated, showing that CO2 can be easily desorbed from the films at 303 K by flowing an inert gas (He). These results show that MOF LB monolayers can be of great interest for the development of MOF-based devices that require the use of very small MOF quantities, especially gas sensors. |
doi_str_mv | 10.1016/j.jcis.2018.02.058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03114366v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979718302066</els_id><sourcerecordid>2008893969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-ff2d1eed268405ebc6893e3a77924c53e282ea020fea204d0e5e986216db9e843</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVpods0XyAnHZODnZFsyxb0sizNH9iSS3sWWmncaPHaG40c2NIPH5lte-xJQvze07x5jF0JKAUIdbsv9y5QKUF0JcgSmu4dWwnQTdEKqN6zFYAUhW51-5F9ItoDCNE0esV-39ldDM6mMI186vk8pGjTcxj5t8dtodX1erjhfRgOxO3oOaXZnxZu8yS59TTF46K89fj3yo9xckiExGcK40_-MtuYfnEXT5TswA_BxWlnBzs6_Mw-9HYgvPxzXrAfd1-_bx6K7dP942a9LVwj6lT0vfQC0UvV1dDgzqlOV1jZttWydk2FspNoQUKPVkLtARvUnZJC-Z3Grq4u2M3Z99kO5hjDwcaTmWwwD-utWd6gEqKulHoVmb0-sznHy4yUzCGQwyEPjNNMRgJ0-XutdEblGc2JiCL2_7wFmKUWszdLLWapxYA0uZYs-nIWYQ78GjAacgHzMnyI6JLxU_if_A29zpa-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008893969</pqid></control><display><type>article</type><title>Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance</title><source>Elsevier ScienceDirect Journals</source><creator>Andrés, Miguel A. ; Benzaqui, M. ; Serre, C. ; Steunou, N. ; Gascón, I.</creator><creatorcontrib>Andrés, Miguel A. ; Benzaqui, M. ; Serre, C. ; Steunou, N. ; Gascón, I.</creatorcontrib><description>[Display omitted]
This contribution reports the fabrication and characterization of ultrathin films of nanoparticles of the water stable microporous Al tricarboxylate metal organic framework MIL-96(Al). The preparation of MOF dispersions in chloroform has been optimized to obtain dense monolayer films of good quality, without nanoparticle agglomeration, at the air-water interface that can be deposited onto solid substrates of different nature without any previous substrate functionalization. The MOF studied shows great interest for CO2 capture because it presents Al3+ Lewis centers and hydroxyl groups that strongly interact with CO2 molecules. A comparative CO2 adsorption study on drop-cast, Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) films using a Quartz Crystal Microbalance-based setup (QCM) has revealed that the CO2 uptake depends strongly on the film fabrication procedure and the storage conditions. Noteworthy the CO2 adsorption capacity of LB films is increased by 30% using a simple and green treatment (immersion of the film into water during 12 h just after film preparation). Finally, the stability of LB MOF monolayers upon several CO2 adsorption/desorption cycles has been demonstrated, showing that CO2 can be easily desorbed from the films at 303 K by flowing an inert gas (He). These results show that MOF LB monolayers can be of great interest for the development of MOF-based devices that require the use of very small MOF quantities, especially gas sensors.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2018.02.058</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Chemical Sciences ; CO2 adsorption/desorption ; Langmuir-Blodgett (LB) films ; Metal organic framework (MOF) ; MIL-96(Al) ; Nanoparticles (NPs) ; Quartz crystal microbalance (QCM) ; Reusable gas sensor</subject><ispartof>Journal of colloid and interface science, 2018-06, Vol.519, p.88-96</ispartof><rights>2018 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-ff2d1eed268405ebc6893e3a77924c53e282ea020fea204d0e5e986216db9e843</citedby><cites>FETCH-LOGICAL-c514t-ff2d1eed268405ebc6893e3a77924c53e282ea020fea204d0e5e986216db9e843</cites><orcidid>0000-0003-3040-2564 ; 0000-0003-3691-3437 ; 0000-0002-7049-7388 ; 0000-0002-3492-6456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979718302066$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03114366$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Andrés, Miguel A.</creatorcontrib><creatorcontrib>Benzaqui, M.</creatorcontrib><creatorcontrib>Serre, C.</creatorcontrib><creatorcontrib>Steunou, N.</creatorcontrib><creatorcontrib>Gascón, I.</creatorcontrib><title>Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance</title><title>Journal of colloid and interface science</title><description>[Display omitted]
This contribution reports the fabrication and characterization of ultrathin films of nanoparticles of the water stable microporous Al tricarboxylate metal organic framework MIL-96(Al). The preparation of MOF dispersions in chloroform has been optimized to obtain dense monolayer films of good quality, without nanoparticle agglomeration, at the air-water interface that can be deposited onto solid substrates of different nature without any previous substrate functionalization. The MOF studied shows great interest for CO2 capture because it presents Al3+ Lewis centers and hydroxyl groups that strongly interact with CO2 molecules. A comparative CO2 adsorption study on drop-cast, Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) films using a Quartz Crystal Microbalance-based setup (QCM) has revealed that the CO2 uptake depends strongly on the film fabrication procedure and the storage conditions. Noteworthy the CO2 adsorption capacity of LB films is increased by 30% using a simple and green treatment (immersion of the film into water during 12 h just after film preparation). Finally, the stability of LB MOF monolayers upon several CO2 adsorption/desorption cycles has been demonstrated, showing that CO2 can be easily desorbed from the films at 303 K by flowing an inert gas (He). These results show that MOF LB monolayers can be of great interest for the development of MOF-based devices that require the use of very small MOF quantities, especially gas sensors.</description><subject>Chemical Sciences</subject><subject>CO2 adsorption/desorption</subject><subject>Langmuir-Blodgett (LB) films</subject><subject>Metal organic framework (MOF)</subject><subject>MIL-96(Al)</subject><subject>Nanoparticles (NPs)</subject><subject>Quartz crystal microbalance (QCM)</subject><subject>Reusable gas sensor</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU9r3DAQxUVpods0XyAnHZODnZFsyxb0sizNH9iSS3sWWmncaPHaG40c2NIPH5lte-xJQvze07x5jF0JKAUIdbsv9y5QKUF0JcgSmu4dWwnQTdEKqN6zFYAUhW51-5F9ItoDCNE0esV-39ldDM6mMI186vk8pGjTcxj5t8dtodX1erjhfRgOxO3oOaXZnxZu8yS59TTF46K89fj3yo9xckiExGcK40_-MtuYfnEXT5TswA_BxWlnBzs6_Mw-9HYgvPxzXrAfd1-_bx6K7dP942a9LVwj6lT0vfQC0UvV1dDgzqlOV1jZttWydk2FspNoQUKPVkLtARvUnZJC-Z3Grq4u2M3Z99kO5hjDwcaTmWwwD-utWd6gEqKulHoVmb0-sznHy4yUzCGQwyEPjNNMRgJ0-XutdEblGc2JiCL2_7wFmKUWszdLLWapxYA0uZYs-nIWYQ78GjAacgHzMnyI6JLxU_if_A29zpa-</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Andrés, Miguel A.</creator><creator>Benzaqui, M.</creator><creator>Serre, C.</creator><creator>Steunou, N.</creator><creator>Gascón, I.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3040-2564</orcidid><orcidid>https://orcid.org/0000-0003-3691-3437</orcidid><orcidid>https://orcid.org/0000-0002-7049-7388</orcidid><orcidid>https://orcid.org/0000-0002-3492-6456</orcidid></search><sort><creationdate>20180601</creationdate><title>Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance</title><author>Andrés, Miguel A. ; Benzaqui, M. ; Serre, C. ; Steunou, N. ; Gascón, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-ff2d1eed268405ebc6893e3a77924c53e282ea020fea204d0e5e986216db9e843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical Sciences</topic><topic>CO2 adsorption/desorption</topic><topic>Langmuir-Blodgett (LB) films</topic><topic>Metal organic framework (MOF)</topic><topic>MIL-96(Al)</topic><topic>Nanoparticles (NPs)</topic><topic>Quartz crystal microbalance (QCM)</topic><topic>Reusable gas sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrés, Miguel A.</creatorcontrib><creatorcontrib>Benzaqui, M.</creatorcontrib><creatorcontrib>Serre, C.</creatorcontrib><creatorcontrib>Steunou, N.</creatorcontrib><creatorcontrib>Gascón, I.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrés, Miguel A.</au><au>Benzaqui, M.</au><au>Serre, C.</au><au>Steunou, N.</au><au>Gascón, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>519</volume><spage>88</spage><epage>96</epage><pages>88-96</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
This contribution reports the fabrication and characterization of ultrathin films of nanoparticles of the water stable microporous Al tricarboxylate metal organic framework MIL-96(Al). The preparation of MOF dispersions in chloroform has been optimized to obtain dense monolayer films of good quality, without nanoparticle agglomeration, at the air-water interface that can be deposited onto solid substrates of different nature without any previous substrate functionalization. The MOF studied shows great interest for CO2 capture because it presents Al3+ Lewis centers and hydroxyl groups that strongly interact with CO2 molecules. A comparative CO2 adsorption study on drop-cast, Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) films using a Quartz Crystal Microbalance-based setup (QCM) has revealed that the CO2 uptake depends strongly on the film fabrication procedure and the storage conditions. Noteworthy the CO2 adsorption capacity of LB films is increased by 30% using a simple and green treatment (immersion of the film into water during 12 h just after film preparation). Finally, the stability of LB MOF monolayers upon several CO2 adsorption/desorption cycles has been demonstrated, showing that CO2 can be easily desorbed from the films at 303 K by flowing an inert gas (He). These results show that MOF LB monolayers can be of great interest for the development of MOF-based devices that require the use of very small MOF quantities, especially gas sensors.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2018.02.058</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3040-2564</orcidid><orcidid>https://orcid.org/0000-0003-3691-3437</orcidid><orcidid>https://orcid.org/0000-0002-7049-7388</orcidid><orcidid>https://orcid.org/0000-0002-3492-6456</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2018-06, Vol.519, p.88-96 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03114366v1 |
source | Elsevier ScienceDirect Journals |
subjects | Chemical Sciences CO2 adsorption/desorption Langmuir-Blodgett (LB) films Metal organic framework (MOF) MIL-96(Al) Nanoparticles (NPs) Quartz crystal microbalance (QCM) Reusable gas sensor |
title | Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20ultrathin%20MIL-96(Al)%20films%20and%20study%20of%20CO2%20adsorption/desorption%20processes%20using%20quartz%20crystal%20microbalance&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Andr%C3%A9s,%20Miguel%20A.&rft.date=2018-06-01&rft.volume=519&rft.spage=88&rft.epage=96&rft.pages=88-96&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2018.02.058&rft_dat=%3Cproquest_hal_p%3E2008893969%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2008893969&rft_id=info:pmid/&rft_els_id=S0021979718302066&rfr_iscdi=true |