The spatio-temporal dynamics of interacting genetic incompatibilities. Part I: the case of stacked underdominant clines

We explore the interaction between two genetic incompatibilities (underdominant loci in diploid organisms) in a population occupying a one-dimensional space. We derive a system of partial differential equations describing the dynamics of allele frequencies and linkage disequilibrium between the two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical biology 2022-02, Vol.84 (3), p.20-20, Article 20
Hauptverfasser: Alfaro, Matthieu, Griette, Quentin, Roze, Denis, Sarels, Benoît
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 3
container_start_page 20
container_title Journal of mathematical biology
container_volume 84
creator Alfaro, Matthieu
Griette, Quentin
Roze, Denis
Sarels, Benoît
description We explore the interaction between two genetic incompatibilities (underdominant loci in diploid organisms) in a population occupying a one-dimensional space. We derive a system of partial differential equations describing the dynamics of allele frequencies and linkage disequilibrium between the two loci, and use a quasi-linkage equilibrium approximation in order to reduce the number of variables. We investigate the solutions of this system and demonstrate the existence of a solution in which the two clines in allele frequency remain stacked together. In the case of asymmetric incompatibilities (i.e. when one homozygote is favored over the other at each locus), these stacked clines propagate in the form of a traveling wave. We obtain an approximation for the speed of this wave which, in particular, is decreased by recombination between the two loci but is always larger than the speed of “one cline alone”.
doi_str_mv 10.1007/s00285-022-01722-6
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03109887v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628901618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-7c64721d8efd2865a96334fb773049298630218069feeb1aba4b3c3855846bf13</originalsourceid><addsrcrecordid>eNp9kcFuFSEUhonR2Gv1BVwYEje6mHqAGYZx1zRqm9xEF3VNGObMLXUGrsBo-vYyTq2JCzeQHL7_B_IR8pLBGQNo3yUArpoKOK-AtWWVj8iO1YJXrGbyMdmBAFFJxfgJeZbSLRSq6dhTciIaJmUnYEd-Xt8gTUeTXagyzscQzUSHO29mZxMNI3U-YzQ2O3-gB_SYnS0zG-Y107vJZYfpjH4xMdOr9zSXOmsSrtGUjf2GA138gHEIs_PGZ2on5zE9J09GMyV8cb-fkq8fP1xfXFb7z5-uLs73la0bkavWyrrlbFA4DlzJxnRSiHrs21ZA3fFOSQGcKZDdiNgz05u6F1aoplG17EcmTsnbrffGTPoY3WzinQ7G6cvzvV5nIBh0SrU_eGHfbOwxhu8LpqxnlyxOk_EYlqS55B1IkK0q6Ot_0NuwRF9-slKqAybZSvGNsjGkFHF8eAEDvSrUm0JdFOrfCrUsoVf31Us_4_AQ-eOsAGIDUjnyB4x_7_5P7S82a6WE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628901618</pqid></control><display><type>article</type><title>The spatio-temporal dynamics of interacting genetic incompatibilities. Part I: the case of stacked underdominant clines</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Alfaro, Matthieu ; Griette, Quentin ; Roze, Denis ; Sarels, Benoît</creator><creatorcontrib>Alfaro, Matthieu ; Griette, Quentin ; Roze, Denis ; Sarels, Benoît</creatorcontrib><description>We explore the interaction between two genetic incompatibilities (underdominant loci in diploid organisms) in a population occupying a one-dimensional space. We derive a system of partial differential equations describing the dynamics of allele frequencies and linkage disequilibrium between the two loci, and use a quasi-linkage equilibrium approximation in order to reduce the number of variables. We investigate the solutions of this system and demonstrate the existence of a solution in which the two clines in allele frequency remain stacked together. In the case of asymmetric incompatibilities (i.e. when one homozygote is favored over the other at each locus), these stacked clines propagate in the form of a traveling wave. We obtain an approximation for the speed of this wave which, in particular, is decreased by recombination between the two loci but is always larger than the speed of “one cline alone”.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-022-01722-6</identifier><identifier>PMID: 35166930</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alleles ; Analysis of PDEs ; Applications of Mathematics ; Approximation ; Clines ; Differential equations ; Diploids ; Diploidy ; Gene Frequency ; Linkage Disequilibrium ; Loci ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Models, Genetic ; Partial differential equations ; Recombination ; Selection, Genetic ; Traveling waves</subject><ispartof>Journal of mathematical biology, 2022-02, Vol.84 (3), p.20-20, Article 20</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-7c64721d8efd2865a96334fb773049298630218069feeb1aba4b3c3855846bf13</citedby><cites>FETCH-LOGICAL-c453t-7c64721d8efd2865a96334fb773049298630218069feeb1aba4b3c3855846bf13</cites><orcidid>0000-0002-8227-4448 ; 0000-0001-5978-9358 ; 0000-0001-6872-920X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-022-01722-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-022-01722-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35166930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03109887$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alfaro, Matthieu</creatorcontrib><creatorcontrib>Griette, Quentin</creatorcontrib><creatorcontrib>Roze, Denis</creatorcontrib><creatorcontrib>Sarels, Benoît</creatorcontrib><title>The spatio-temporal dynamics of interacting genetic incompatibilities. Part I: the case of stacked underdominant clines</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>We explore the interaction between two genetic incompatibilities (underdominant loci in diploid organisms) in a population occupying a one-dimensional space. We derive a system of partial differential equations describing the dynamics of allele frequencies and linkage disequilibrium between the two loci, and use a quasi-linkage equilibrium approximation in order to reduce the number of variables. We investigate the solutions of this system and demonstrate the existence of a solution in which the two clines in allele frequency remain stacked together. In the case of asymmetric incompatibilities (i.e. when one homozygote is favored over the other at each locus), these stacked clines propagate in the form of a traveling wave. We obtain an approximation for the speed of this wave which, in particular, is decreased by recombination between the two loci but is always larger than the speed of “one cline alone”.</description><subject>Alleles</subject><subject>Analysis of PDEs</subject><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Clines</subject><subject>Differential equations</subject><subject>Diploids</subject><subject>Diploidy</subject><subject>Gene Frequency</subject><subject>Linkage Disequilibrium</subject><subject>Loci</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Genetic</subject><subject>Partial differential equations</subject><subject>Recombination</subject><subject>Selection, Genetic</subject><subject>Traveling waves</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFuFSEUhonR2Gv1BVwYEje6mHqAGYZx1zRqm9xEF3VNGObMLXUGrsBo-vYyTq2JCzeQHL7_B_IR8pLBGQNo3yUArpoKOK-AtWWVj8iO1YJXrGbyMdmBAFFJxfgJeZbSLRSq6dhTciIaJmUnYEd-Xt8gTUeTXagyzscQzUSHO29mZxMNI3U-YzQ2O3-gB_SYnS0zG-Y107vJZYfpjH4xMdOr9zSXOmsSrtGUjf2GA138gHEIs_PGZ2on5zE9J09GMyV8cb-fkq8fP1xfXFb7z5-uLs73la0bkavWyrrlbFA4DlzJxnRSiHrs21ZA3fFOSQGcKZDdiNgz05u6F1aoplG17EcmTsnbrffGTPoY3WzinQ7G6cvzvV5nIBh0SrU_eGHfbOwxhu8LpqxnlyxOk_EYlqS55B1IkK0q6Ot_0NuwRF9-slKqAybZSvGNsjGkFHF8eAEDvSrUm0JdFOrfCrUsoVf31Us_4_AQ-eOsAGIDUjnyB4x_7_5P7S82a6WE</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Alfaro, Matthieu</creator><creator>Griette, Quentin</creator><creator>Roze, Denis</creator><creator>Sarels, Benoît</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8227-4448</orcidid><orcidid>https://orcid.org/0000-0001-5978-9358</orcidid><orcidid>https://orcid.org/0000-0001-6872-920X</orcidid></search><sort><creationdate>20220201</creationdate><title>The spatio-temporal dynamics of interacting genetic incompatibilities. Part I: the case of stacked underdominant clines</title><author>Alfaro, Matthieu ; Griette, Quentin ; Roze, Denis ; Sarels, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-7c64721d8efd2865a96334fb773049298630218069feeb1aba4b3c3855846bf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alleles</topic><topic>Analysis of PDEs</topic><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Clines</topic><topic>Differential equations</topic><topic>Diploids</topic><topic>Diploidy</topic><topic>Gene Frequency</topic><topic>Linkage Disequilibrium</topic><topic>Loci</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Genetic</topic><topic>Partial differential equations</topic><topic>Recombination</topic><topic>Selection, Genetic</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alfaro, Matthieu</creatorcontrib><creatorcontrib>Griette, Quentin</creatorcontrib><creatorcontrib>Roze, Denis</creatorcontrib><creatorcontrib>Sarels, Benoît</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alfaro, Matthieu</au><au>Griette, Quentin</au><au>Roze, Denis</au><au>Sarels, Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The spatio-temporal dynamics of interacting genetic incompatibilities. Part I: the case of stacked underdominant clines</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>84</volume><issue>3</issue><spage>20</spage><epage>20</epage><pages>20-20</pages><artnum>20</artnum><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>We explore the interaction between two genetic incompatibilities (underdominant loci in diploid organisms) in a population occupying a one-dimensional space. We derive a system of partial differential equations describing the dynamics of allele frequencies and linkage disequilibrium between the two loci, and use a quasi-linkage equilibrium approximation in order to reduce the number of variables. We investigate the solutions of this system and demonstrate the existence of a solution in which the two clines in allele frequency remain stacked together. In the case of asymmetric incompatibilities (i.e. when one homozygote is favored over the other at each locus), these stacked clines propagate in the form of a traveling wave. We obtain an approximation for the speed of this wave which, in particular, is decreased by recombination between the two loci but is always larger than the speed of “one cline alone”.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35166930</pmid><doi>10.1007/s00285-022-01722-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8227-4448</orcidid><orcidid>https://orcid.org/0000-0001-5978-9358</orcidid><orcidid>https://orcid.org/0000-0001-6872-920X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0303-6812
ispartof Journal of mathematical biology, 2022-02, Vol.84 (3), p.20-20, Article 20
issn 0303-6812
1432-1416
language eng
recordid cdi_hal_primary_oai_HAL_hal_03109887v2
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Alleles
Analysis of PDEs
Applications of Mathematics
Approximation
Clines
Differential equations
Diploids
Diploidy
Gene Frequency
Linkage Disequilibrium
Loci
Mathematical analysis
Mathematical and Computational Biology
Mathematics
Mathematics and Statistics
Models, Genetic
Partial differential equations
Recombination
Selection, Genetic
Traveling waves
title The spatio-temporal dynamics of interacting genetic incompatibilities. Part I: the case of stacked underdominant clines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20spatio-temporal%20dynamics%20of%20interacting%20genetic%20incompatibilities.%20Part%20I:%20the%20case%20of%20stacked%20underdominant%20clines&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Alfaro,%20Matthieu&rft.date=2022-02-01&rft.volume=84&rft.issue=3&rft.spage=20&rft.epage=20&rft.pages=20-20&rft.artnum=20&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-022-01722-6&rft_dat=%3Cproquest_hal_p%3E2628901618%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628901618&rft_id=info:pmid/35166930&rfr_iscdi=true