Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review

The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2021-03, Vol.123, p.123-153
Hauptverfasser: Dejob, Léa, Toury, Bérangère, Tadier, Solène, Grémillard, Laurent, Gaillard, Claire, Salles, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue
container_start_page 123
container_title Acta biomaterialia
container_volume 123
creator Dejob, Léa
Toury, Bérangère
Tadier, Solène
Grémillard, Laurent
Gaillard, Claire
Salles, Vincent
description The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field. With this method, nano/micrometer-sized fibres can be produced, with an adjustable chemical composition. Therefore, by shaping bioactive ceramics such as silica, bioactive glasses and calcium phosphates through electrospinning, promising properties for their use in BTE can be obtained. This review focuses on the in situ synthesis and simultaneous electrospinning of bioceramic-based fibres while the reasons for using each material are correlated with its bioactivity. Theoretical and practical considerations for the synthesis and electrospinning of these materials are developed. Finally, investigations into the in vitro and in vivo bioactivity of different systems using such inorganic fibres are exposed. [Display omitted]
doi_str_mv 10.1016/j.actbio.2020.12.032
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03108165v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706120307467</els_id><sourcerecordid>2473413655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-75ca79901a8396591b6fa6a0777be71cbcda871f9553706602a1978719f972553</originalsourceid><addsrcrecordid>eNp9Uc1u1DAYjBCIlsIbIGSJCxyy-CexHQ5Iq6pQpJW4wNlynC9dr7J2sJOi8gx9iD4LT8YXUnrgwMn2aGb8fTNF8ZLRDaNMvjtsrJtaHzeccoT4hgr-qDhlWulS1VI_xruqeKmoZCfFs5wPlArNuH5anAgh6kZLfVrcXgzgphTz6EPw4YrEnvhAsp9mkm_CtIfsf0KHwOCdLVub8WFDR5wdnJ-PZNyjdm8nIDiLg2SP3mXSx0TsOC6ayceQF882BiCTz3kGAuHKB4CEP74n2193Ca49_HhePOntkOHF_XlWfPt48fX8stx9-fT5fLsrXS3khNs5q5qGMqtFI-uGtbK30lKlVAuKudZ1VivWN3UtcHtJuWWNQqTpG8URPCverr57O5gx-aNNNyZaby63O7NgVDCqmayvGXLfrNwxxe8z5MkcfXYwDDZAnLPhlRIVE_KP7et_qIc4p4CbGF7TCrNvtEBWtbIcpp4T9A8TMGqWZs3BrM2apVnDOI7DUfbq3nxuj9A9iP5WiYQPKwEwOUwzmew8BAedT1ix6aL__w-_AWw_tzY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504812983</pqid></control><display><type>article</type><title>Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Dejob, Léa ; Toury, Bérangère ; Tadier, Solène ; Grémillard, Laurent ; Gaillard, Claire ; Salles, Vincent</creator><creatorcontrib>Dejob, Léa ; Toury, Bérangère ; Tadier, Solène ; Grémillard, Laurent ; Gaillard, Claire ; Salles, Vincent</creatorcontrib><description>The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field. With this method, nano/micrometer-sized fibres can be produced, with an adjustable chemical composition. Therefore, by shaping bioactive ceramics such as silica, bioactive glasses and calcium phosphates through electrospinning, promising properties for their use in BTE can be obtained. This review focuses on the in situ synthesis and simultaneous electrospinning of bioceramic-based fibres while the reasons for using each material are correlated with its bioactivity. Theoretical and practical considerations for the synthesis and electrospinning of these materials are developed. Finally, investigations into the in vitro and in vivo bioactivity of different systems using such inorganic fibres are exposed. [Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2020.12.032</identifier><identifier>PMID: 33359868</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bioactive glass ; Bioceramics ; Bioengineering ; Bioglass ; Biological activity ; Biomaterials ; Bone and Bones ; Bone healing ; Bone matrix ; Bone tissue engineering ; Bones ; Calcium ; Calcium phosphate ; Calcium Phosphates ; Ceramics ; Chemical composition ; Chemical Sciences ; Electrospinning ; Extracellular matrix ; Fibers ; Fibrous structure ; In situ electrospinning ; In vivo methods and tests ; Life Sciences ; Material chemistry ; Mimicry ; Silica ; Silica glass ; Silicon Dioxide ; Sol-gel synthesis ; Synthesis ; Tissue Engineering ; Viscoelasticity</subject><ispartof>Acta biomaterialia, 2021-03, Vol.123, p.123-153</ispartof><rights>2020 Acta Materialia Inc.</rights><rights>Copyright © 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Mar 15, 2021</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-75ca79901a8396591b6fa6a0777be71cbcda871f9553706602a1978719f972553</citedby><cites>FETCH-LOGICAL-c536t-75ca79901a8396591b6fa6a0777be71cbcda871f9553706602a1978719f972553</cites><orcidid>0000-0002-6761-7289 ; 0000-0001-5889-0796 ; 0000-0002-0620-2004 ; 0000-0002-7660-1705 ; 0000-0001-7258-6483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706120307467$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33359868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03108165$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dejob, Léa</creatorcontrib><creatorcontrib>Toury, Bérangère</creatorcontrib><creatorcontrib>Tadier, Solène</creatorcontrib><creatorcontrib>Grémillard, Laurent</creatorcontrib><creatorcontrib>Gaillard, Claire</creatorcontrib><creatorcontrib>Salles, Vincent</creatorcontrib><title>Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field. With this method, nano/micrometer-sized fibres can be produced, with an adjustable chemical composition. Therefore, by shaping bioactive ceramics such as silica, bioactive glasses and calcium phosphates through electrospinning, promising properties for their use in BTE can be obtained. This review focuses on the in situ synthesis and simultaneous electrospinning of bioceramic-based fibres while the reasons for using each material are correlated with its bioactivity. Theoretical and practical considerations for the synthesis and electrospinning of these materials are developed. Finally, investigations into the in vitro and in vivo bioactivity of different systems using such inorganic fibres are exposed. [Display omitted]</description><subject>Bioactive glass</subject><subject>Bioceramics</subject><subject>Bioengineering</subject><subject>Bioglass</subject><subject>Biological activity</subject><subject>Biomaterials</subject><subject>Bone and Bones</subject><subject>Bone healing</subject><subject>Bone matrix</subject><subject>Bone tissue engineering</subject><subject>Bones</subject><subject>Calcium</subject><subject>Calcium phosphate</subject><subject>Calcium Phosphates</subject><subject>Ceramics</subject><subject>Chemical composition</subject><subject>Chemical Sciences</subject><subject>Electrospinning</subject><subject>Extracellular matrix</subject><subject>Fibers</subject><subject>Fibrous structure</subject><subject>In situ electrospinning</subject><subject>In vivo methods and tests</subject><subject>Life Sciences</subject><subject>Material chemistry</subject><subject>Mimicry</subject><subject>Silica</subject><subject>Silica glass</subject><subject>Silicon Dioxide</subject><subject>Sol-gel synthesis</subject><subject>Synthesis</subject><subject>Tissue Engineering</subject><subject>Viscoelasticity</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Uc1u1DAYjBCIlsIbIGSJCxyy-CexHQ5Iq6pQpJW4wNlynC9dr7J2sJOi8gx9iD4LT8YXUnrgwMn2aGb8fTNF8ZLRDaNMvjtsrJtaHzeccoT4hgr-qDhlWulS1VI_xruqeKmoZCfFs5wPlArNuH5anAgh6kZLfVrcXgzgphTz6EPw4YrEnvhAsp9mkm_CtIfsf0KHwOCdLVub8WFDR5wdnJ-PZNyjdm8nIDiLg2SP3mXSx0TsOC6ayceQF882BiCTz3kGAuHKB4CEP74n2193Ca49_HhePOntkOHF_XlWfPt48fX8stx9-fT5fLsrXS3khNs5q5qGMqtFI-uGtbK30lKlVAuKudZ1VivWN3UtcHtJuWWNQqTpG8URPCverr57O5gx-aNNNyZaby63O7NgVDCqmayvGXLfrNwxxe8z5MkcfXYwDDZAnLPhlRIVE_KP7et_qIc4p4CbGF7TCrNvtEBWtbIcpp4T9A8TMGqWZs3BrM2apVnDOI7DUfbq3nxuj9A9iP5WiYQPKwEwOUwzmew8BAedT1ix6aL__w-_AWw_tzY</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Dejob, Léa</creator><creator>Toury, Bérangère</creator><creator>Tadier, Solène</creator><creator>Grémillard, Laurent</creator><creator>Gaillard, Claire</creator><creator>Salles, Vincent</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6761-7289</orcidid><orcidid>https://orcid.org/0000-0001-5889-0796</orcidid><orcidid>https://orcid.org/0000-0002-0620-2004</orcidid><orcidid>https://orcid.org/0000-0002-7660-1705</orcidid><orcidid>https://orcid.org/0000-0001-7258-6483</orcidid></search><sort><creationdate>20210315</creationdate><title>Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review</title><author>Dejob, Léa ; Toury, Bérangère ; Tadier, Solène ; Grémillard, Laurent ; Gaillard, Claire ; Salles, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-75ca79901a8396591b6fa6a0777be71cbcda871f9553706602a1978719f972553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioactive glass</topic><topic>Bioceramics</topic><topic>Bioengineering</topic><topic>Bioglass</topic><topic>Biological activity</topic><topic>Biomaterials</topic><topic>Bone and Bones</topic><topic>Bone healing</topic><topic>Bone matrix</topic><topic>Bone tissue engineering</topic><topic>Bones</topic><topic>Calcium</topic><topic>Calcium phosphate</topic><topic>Calcium Phosphates</topic><topic>Ceramics</topic><topic>Chemical composition</topic><topic>Chemical Sciences</topic><topic>Electrospinning</topic><topic>Extracellular matrix</topic><topic>Fibers</topic><topic>Fibrous structure</topic><topic>In situ electrospinning</topic><topic>In vivo methods and tests</topic><topic>Life Sciences</topic><topic>Material chemistry</topic><topic>Mimicry</topic><topic>Silica</topic><topic>Silica glass</topic><topic>Silicon Dioxide</topic><topic>Sol-gel synthesis</topic><topic>Synthesis</topic><topic>Tissue Engineering</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dejob, Léa</creatorcontrib><creatorcontrib>Toury, Bérangère</creatorcontrib><creatorcontrib>Tadier, Solène</creatorcontrib><creatorcontrib>Grémillard, Laurent</creatorcontrib><creatorcontrib>Gaillard, Claire</creatorcontrib><creatorcontrib>Salles, Vincent</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dejob, Léa</au><au>Toury, Bérangère</au><au>Tadier, Solène</au><au>Grémillard, Laurent</au><au>Gaillard, Claire</au><au>Salles, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2021-03-15</date><risdate>2021</risdate><volume>123</volume><spage>123</spage><epage>153</epage><pages>123-153</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field. With this method, nano/micrometer-sized fibres can be produced, with an adjustable chemical composition. Therefore, by shaping bioactive ceramics such as silica, bioactive glasses and calcium phosphates through electrospinning, promising properties for their use in BTE can be obtained. This review focuses on the in situ synthesis and simultaneous electrospinning of bioceramic-based fibres while the reasons for using each material are correlated with its bioactivity. Theoretical and practical considerations for the synthesis and electrospinning of these materials are developed. Finally, investigations into the in vitro and in vivo bioactivity of different systems using such inorganic fibres are exposed. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33359868</pmid><doi>10.1016/j.actbio.2020.12.032</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-6761-7289</orcidid><orcidid>https://orcid.org/0000-0001-5889-0796</orcidid><orcidid>https://orcid.org/0000-0002-0620-2004</orcidid><orcidid>https://orcid.org/0000-0002-7660-1705</orcidid><orcidid>https://orcid.org/0000-0001-7258-6483</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2021-03, Vol.123, p.123-153
issn 1742-7061
1878-7568
language eng
recordid cdi_hal_primary_oai_HAL_hal_03108165v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Bioactive glass
Bioceramics
Bioengineering
Bioglass
Biological activity
Biomaterials
Bone and Bones
Bone healing
Bone matrix
Bone tissue engineering
Bones
Calcium
Calcium phosphate
Calcium Phosphates
Ceramics
Chemical composition
Chemical Sciences
Electrospinning
Extracellular matrix
Fibers
Fibrous structure
In situ electrospinning
In vivo methods and tests
Life Sciences
Material chemistry
Mimicry
Silica
Silica glass
Silicon Dioxide
Sol-gel synthesis
Synthesis
Tissue Engineering
Viscoelasticity
title Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospinning%20of%20in%20situ%20synthesized%20silica-based%20and%20calcium%20phosphate%20bioceramics%20for%20applications%20in%20bone%20tissue%20engineering:%20A%C2%A0review&rft.jtitle=Acta%20biomaterialia&rft.au=Dejob,%20L%C3%A9a&rft.date=2021-03-15&rft.volume=123&rft.spage=123&rft.epage=153&rft.pages=123-153&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2020.12.032&rft_dat=%3Cproquest_hal_p%3E2473413655%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504812983&rft_id=info:pmid/33359868&rft_els_id=S1742706120307467&rfr_iscdi=true