Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review
The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and a...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2021-03, Vol.123, p.123-153 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | |
container_start_page | 123 |
container_title | Acta biomaterialia |
container_volume | 123 |
creator | Dejob, Léa Toury, Bérangère Tadier, Solène Grémillard, Laurent Gaillard, Claire Salles, Vincent |
description | The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field. With this method, nano/micrometer-sized fibres can be produced, with an adjustable chemical composition. Therefore, by shaping bioactive ceramics such as silica, bioactive glasses and calcium phosphates through electrospinning, promising properties for their use in BTE can be obtained. This review focuses on the in situ synthesis and simultaneous electrospinning of bioceramic-based fibres while the reasons for using each material are correlated with its bioactivity. Theoretical and practical considerations for the synthesis and electrospinning of these materials are developed. Finally, investigations into the in vitro and in vivo bioactivity of different systems using such inorganic fibres are exposed.
[Display omitted] |
doi_str_mv | 10.1016/j.actbio.2020.12.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03108165v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706120307467</els_id><sourcerecordid>2473413655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-75ca79901a8396591b6fa6a0777be71cbcda871f9553706602a1978719f972553</originalsourceid><addsrcrecordid>eNp9Uc1u1DAYjBCIlsIbIGSJCxyy-CexHQ5Iq6pQpJW4wNlynC9dr7J2sJOi8gx9iD4LT8YXUnrgwMn2aGb8fTNF8ZLRDaNMvjtsrJtaHzeccoT4hgr-qDhlWulS1VI_xruqeKmoZCfFs5wPlArNuH5anAgh6kZLfVrcXgzgphTz6EPw4YrEnvhAsp9mkm_CtIfsf0KHwOCdLVub8WFDR5wdnJ-PZNyjdm8nIDiLg2SP3mXSx0TsOC6ayceQF882BiCTz3kGAuHKB4CEP74n2193Ca49_HhePOntkOHF_XlWfPt48fX8stx9-fT5fLsrXS3khNs5q5qGMqtFI-uGtbK30lKlVAuKudZ1VivWN3UtcHtJuWWNQqTpG8URPCverr57O5gx-aNNNyZaby63O7NgVDCqmayvGXLfrNwxxe8z5MkcfXYwDDZAnLPhlRIVE_KP7et_qIc4p4CbGF7TCrNvtEBWtbIcpp4T9A8TMGqWZs3BrM2apVnDOI7DUfbq3nxuj9A9iP5WiYQPKwEwOUwzmew8BAedT1ix6aL__w-_AWw_tzY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504812983</pqid></control><display><type>article</type><title>Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Dejob, Léa ; Toury, Bérangère ; Tadier, Solène ; Grémillard, Laurent ; Gaillard, Claire ; Salles, Vincent</creator><creatorcontrib>Dejob, Léa ; Toury, Bérangère ; Tadier, Solène ; Grémillard, Laurent ; Gaillard, Claire ; Salles, Vincent</creatorcontrib><description>The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field. With this method, nano/micrometer-sized fibres can be produced, with an adjustable chemical composition. Therefore, by shaping bioactive ceramics such as silica, bioactive glasses and calcium phosphates through electrospinning, promising properties for their use in BTE can be obtained. This review focuses on the in situ synthesis and simultaneous electrospinning of bioceramic-based fibres while the reasons for using each material are correlated with its bioactivity. Theoretical and practical considerations for the synthesis and electrospinning of these materials are developed. Finally, investigations into the in vitro and in vivo bioactivity of different systems using such inorganic fibres are exposed.
[Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2020.12.032</identifier><identifier>PMID: 33359868</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bioactive glass ; Bioceramics ; Bioengineering ; Bioglass ; Biological activity ; Biomaterials ; Bone and Bones ; Bone healing ; Bone matrix ; Bone tissue engineering ; Bones ; Calcium ; Calcium phosphate ; Calcium Phosphates ; Ceramics ; Chemical composition ; Chemical Sciences ; Electrospinning ; Extracellular matrix ; Fibers ; Fibrous structure ; In situ electrospinning ; In vivo methods and tests ; Life Sciences ; Material chemistry ; Mimicry ; Silica ; Silica glass ; Silicon Dioxide ; Sol-gel synthesis ; Synthesis ; Tissue Engineering ; Viscoelasticity</subject><ispartof>Acta biomaterialia, 2021-03, Vol.123, p.123-153</ispartof><rights>2020 Acta Materialia Inc.</rights><rights>Copyright © 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Mar 15, 2021</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-75ca79901a8396591b6fa6a0777be71cbcda871f9553706602a1978719f972553</citedby><cites>FETCH-LOGICAL-c536t-75ca79901a8396591b6fa6a0777be71cbcda871f9553706602a1978719f972553</cites><orcidid>0000-0002-6761-7289 ; 0000-0001-5889-0796 ; 0000-0002-0620-2004 ; 0000-0002-7660-1705 ; 0000-0001-7258-6483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706120307467$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33359868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03108165$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dejob, Léa</creatorcontrib><creatorcontrib>Toury, Bérangère</creatorcontrib><creatorcontrib>Tadier, Solène</creatorcontrib><creatorcontrib>Grémillard, Laurent</creatorcontrib><creatorcontrib>Gaillard, Claire</creatorcontrib><creatorcontrib>Salles, Vincent</creatorcontrib><title>Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field. With this method, nano/micrometer-sized fibres can be produced, with an adjustable chemical composition. Therefore, by shaping bioactive ceramics such as silica, bioactive glasses and calcium phosphates through electrospinning, promising properties for their use in BTE can be obtained. This review focuses on the in situ synthesis and simultaneous electrospinning of bioceramic-based fibres while the reasons for using each material are correlated with its bioactivity. Theoretical and practical considerations for the synthesis and electrospinning of these materials are developed. Finally, investigations into the in vitro and in vivo bioactivity of different systems using such inorganic fibres are exposed.
[Display omitted]</description><subject>Bioactive glass</subject><subject>Bioceramics</subject><subject>Bioengineering</subject><subject>Bioglass</subject><subject>Biological activity</subject><subject>Biomaterials</subject><subject>Bone and Bones</subject><subject>Bone healing</subject><subject>Bone matrix</subject><subject>Bone tissue engineering</subject><subject>Bones</subject><subject>Calcium</subject><subject>Calcium phosphate</subject><subject>Calcium Phosphates</subject><subject>Ceramics</subject><subject>Chemical composition</subject><subject>Chemical Sciences</subject><subject>Electrospinning</subject><subject>Extracellular matrix</subject><subject>Fibers</subject><subject>Fibrous structure</subject><subject>In situ electrospinning</subject><subject>In vivo methods and tests</subject><subject>Life Sciences</subject><subject>Material chemistry</subject><subject>Mimicry</subject><subject>Silica</subject><subject>Silica glass</subject><subject>Silicon Dioxide</subject><subject>Sol-gel synthesis</subject><subject>Synthesis</subject><subject>Tissue Engineering</subject><subject>Viscoelasticity</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Uc1u1DAYjBCIlsIbIGSJCxyy-CexHQ5Iq6pQpJW4wNlynC9dr7J2sJOi8gx9iD4LT8YXUnrgwMn2aGb8fTNF8ZLRDaNMvjtsrJtaHzeccoT4hgr-qDhlWulS1VI_xruqeKmoZCfFs5wPlArNuH5anAgh6kZLfVrcXgzgphTz6EPw4YrEnvhAsp9mkm_CtIfsf0KHwOCdLVub8WFDR5wdnJ-PZNyjdm8nIDiLg2SP3mXSx0TsOC6ayceQF882BiCTz3kGAuHKB4CEP74n2193Ca49_HhePOntkOHF_XlWfPt48fX8stx9-fT5fLsrXS3khNs5q5qGMqtFI-uGtbK30lKlVAuKudZ1VivWN3UtcHtJuWWNQqTpG8URPCverr57O5gx-aNNNyZaby63O7NgVDCqmayvGXLfrNwxxe8z5MkcfXYwDDZAnLPhlRIVE_KP7et_qIc4p4CbGF7TCrNvtEBWtbIcpp4T9A8TMGqWZs3BrM2apVnDOI7DUfbq3nxuj9A9iP5WiYQPKwEwOUwzmew8BAedT1ix6aL__w-_AWw_tzY</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Dejob, Léa</creator><creator>Toury, Bérangère</creator><creator>Tadier, Solène</creator><creator>Grémillard, Laurent</creator><creator>Gaillard, Claire</creator><creator>Salles, Vincent</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6761-7289</orcidid><orcidid>https://orcid.org/0000-0001-5889-0796</orcidid><orcidid>https://orcid.org/0000-0002-0620-2004</orcidid><orcidid>https://orcid.org/0000-0002-7660-1705</orcidid><orcidid>https://orcid.org/0000-0001-7258-6483</orcidid></search><sort><creationdate>20210315</creationdate><title>Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review</title><author>Dejob, Léa ; Toury, Bérangère ; Tadier, Solène ; Grémillard, Laurent ; Gaillard, Claire ; Salles, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-75ca79901a8396591b6fa6a0777be71cbcda871f9553706602a1978719f972553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioactive glass</topic><topic>Bioceramics</topic><topic>Bioengineering</topic><topic>Bioglass</topic><topic>Biological activity</topic><topic>Biomaterials</topic><topic>Bone and Bones</topic><topic>Bone healing</topic><topic>Bone matrix</topic><topic>Bone tissue engineering</topic><topic>Bones</topic><topic>Calcium</topic><topic>Calcium phosphate</topic><topic>Calcium Phosphates</topic><topic>Ceramics</topic><topic>Chemical composition</topic><topic>Chemical Sciences</topic><topic>Electrospinning</topic><topic>Extracellular matrix</topic><topic>Fibers</topic><topic>Fibrous structure</topic><topic>In situ electrospinning</topic><topic>In vivo methods and tests</topic><topic>Life Sciences</topic><topic>Material chemistry</topic><topic>Mimicry</topic><topic>Silica</topic><topic>Silica glass</topic><topic>Silicon Dioxide</topic><topic>Sol-gel synthesis</topic><topic>Synthesis</topic><topic>Tissue Engineering</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dejob, Léa</creatorcontrib><creatorcontrib>Toury, Bérangère</creatorcontrib><creatorcontrib>Tadier, Solène</creatorcontrib><creatorcontrib>Grémillard, Laurent</creatorcontrib><creatorcontrib>Gaillard, Claire</creatorcontrib><creatorcontrib>Salles, Vincent</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dejob, Léa</au><au>Toury, Bérangère</au><au>Tadier, Solène</au><au>Grémillard, Laurent</au><au>Gaillard, Claire</au><au>Salles, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2021-03-15</date><risdate>2021</risdate><volume>123</volume><spage>123</spage><epage>153</epage><pages>123-153</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field. With this method, nano/micrometer-sized fibres can be produced, with an adjustable chemical composition. Therefore, by shaping bioactive ceramics such as silica, bioactive glasses and calcium phosphates through electrospinning, promising properties for their use in BTE can be obtained. This review focuses on the in situ synthesis and simultaneous electrospinning of bioceramic-based fibres while the reasons for using each material are correlated with its bioactivity. Theoretical and practical considerations for the synthesis and electrospinning of these materials are developed. Finally, investigations into the in vitro and in vivo bioactivity of different systems using such inorganic fibres are exposed.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33359868</pmid><doi>10.1016/j.actbio.2020.12.032</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-6761-7289</orcidid><orcidid>https://orcid.org/0000-0001-5889-0796</orcidid><orcidid>https://orcid.org/0000-0002-0620-2004</orcidid><orcidid>https://orcid.org/0000-0002-7660-1705</orcidid><orcidid>https://orcid.org/0000-0001-7258-6483</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2021-03, Vol.123, p.123-153 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03108165v1 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Bioactive glass Bioceramics Bioengineering Bioglass Biological activity Biomaterials Bone and Bones Bone healing Bone matrix Bone tissue engineering Bones Calcium Calcium phosphate Calcium Phosphates Ceramics Chemical composition Chemical Sciences Electrospinning Extracellular matrix Fibers Fibrous structure In situ electrospinning In vivo methods and tests Life Sciences Material chemistry Mimicry Silica Silica glass Silicon Dioxide Sol-gel synthesis Synthesis Tissue Engineering Viscoelasticity |
title | Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospinning%20of%20in%20situ%20synthesized%20silica-based%20and%20calcium%20phosphate%20bioceramics%20for%20applications%20in%20bone%20tissue%20engineering:%20A%C2%A0review&rft.jtitle=Acta%20biomaterialia&rft.au=Dejob,%20L%C3%A9a&rft.date=2021-03-15&rft.volume=123&rft.spage=123&rft.epage=153&rft.pages=123-153&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2020.12.032&rft_dat=%3Cproquest_hal_p%3E2473413655%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504812983&rft_id=info:pmid/33359868&rft_els_id=S1742706120307467&rfr_iscdi=true |