Scaling pair count to next galaxy surveys

ABSTRACT Counting pairs of galaxies or stars according to their distance is at the core of real-space correlation analyses performed in astrophysics and cosmology. Upcoming galaxy surveys (LSST, Euclid) will measure properties of billions of galaxies challenging our ability to perform such counting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2022-02, Vol.510 (2), p.3085-3097
Hauptverfasser: Plaszczynski, S, Campagne, J E, Peloton, J, Arnault, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3097
container_issue 2
container_start_page 3085
container_title Monthly notices of the Royal Astronomical Society
container_volume 510
creator Plaszczynski, S
Campagne, J E
Peloton, J
Arnault, C
description ABSTRACT Counting pairs of galaxies or stars according to their distance is at the core of real-space correlation analyses performed in astrophysics and cosmology. Upcoming galaxy surveys (LSST, Euclid) will measure properties of billions of galaxies challenging our ability to perform such counting in a minute-scale time relevant for the usage of simulations. The problem is only limited by efficient access to the data, hence belongs to the big data category. We use the popular Apache Spark framework to address it and design an efficient high-throughput algorithm to deal with hundreds of millions to billions of input data. To optimize it, we revisit the question of non-hierarchical sphere pixelization based on cube symmetries and develop a new one dubbed the ‘Similar Radius Sphere Pixelization’ (SARSPix) with very close to square pixels. It provides the most adapted indexing over the sphere for all distance-related computations. Using LSST-like fast simulations, we compute autocorrelation functions on tomographic bins containing between a hundred million to one billion data points. In each case, we achieve the construction of a standard pair-distance histogram in about 2 min, using a simple algorithm that is shown to scale, over a moderate number of nodes (16–64). This illustrates the potential of this new techniques in the field of astronomy where data access is becoming the main bottleneck. They can be easily adapted to other use-cases as nearest-neighbours search, catalogue cross-match or cluster finding. The software is publicly available from https://github.com/astrolabsoftware/SparkCorr.
doi_str_mv 10.1093/mnras/stab3640
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03107920v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stab3640</oup_id><sourcerecordid>10.1093/mnras/stab3640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-c8f5bb9ccbb994b6224f5d3f4fb840d055305b2e6671f1fae5ded5f1f238a8653</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqGwMnvtkPZsx04yVhVQpEgMwGzZjl2C0iSyk6r596QtHyPL3enVc-_wIHRPYEEgZ8td41VYhl5pJhK4QBFhgsc0F-ISRQCMx1lKyDW6CeETABJGRYTmr0bVVbPFnao8Nu3Q9LhvcWMPPd6qWh1GHAa_t2O4RVdO1cHefe8Zen98eFtv4uLl6Xm9KmJDBe1jkzmudW7MNPJEC0oTx0vmEqezBErgnAHX1AqREkecsry0JZ8uyjKVCc5maH7u_VC17Hy1U36UrarkZlXIYwaMQJpT2JOJXZxZ49sQvHW_DwTkUYo8SZE_Uv7K26H7j_0CkIZkiw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Scaling pair count to next galaxy surveys</title><source>Oxford Journals Open Access Collection</source><creator>Plaszczynski, S ; Campagne, J E ; Peloton, J ; Arnault, C</creator><creatorcontrib>Plaszczynski, S ; Campagne, J E ; Peloton, J ; Arnault, C</creatorcontrib><description>ABSTRACT Counting pairs of galaxies or stars according to their distance is at the core of real-space correlation analyses performed in astrophysics and cosmology. Upcoming galaxy surveys (LSST, Euclid) will measure properties of billions of galaxies challenging our ability to perform such counting in a minute-scale time relevant for the usage of simulations. The problem is only limited by efficient access to the data, hence belongs to the big data category. We use the popular Apache Spark framework to address it and design an efficient high-throughput algorithm to deal with hundreds of millions to billions of input data. To optimize it, we revisit the question of non-hierarchical sphere pixelization based on cube symmetries and develop a new one dubbed the ‘Similar Radius Sphere Pixelization’ (SARSPix) with very close to square pixels. It provides the most adapted indexing over the sphere for all distance-related computations. Using LSST-like fast simulations, we compute autocorrelation functions on tomographic bins containing between a hundred million to one billion data points. In each case, we achieve the construction of a standard pair-distance histogram in about 2 min, using a simple algorithm that is shown to scale, over a moderate number of nodes (16–64). This illustrates the potential of this new techniques in the field of astronomy where data access is becoming the main bottleneck. They can be easily adapted to other use-cases as nearest-neighbours search, catalogue cross-match or cluster finding. The software is publicly available from https://github.com/astrolabsoftware/SparkCorr.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stab3640</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Astrophysics ; Instrumentation and Detectors ; Physics</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2022-02, Vol.510 (2), p.3085-3097</ispartof><rights>2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-c8f5bb9ccbb994b6224f5d3f4fb840d055305b2e6671f1fae5ded5f1f238a8653</cites><orcidid>0000-0002-8560-4449 ; 0000-0002-1590-6927 ; 0000-0002-1278-109X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stab3640$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://hal.science/hal-03107920$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Plaszczynski, S</creatorcontrib><creatorcontrib>Campagne, J E</creatorcontrib><creatorcontrib>Peloton, J</creatorcontrib><creatorcontrib>Arnault, C</creatorcontrib><title>Scaling pair count to next galaxy surveys</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT Counting pairs of galaxies or stars according to their distance is at the core of real-space correlation analyses performed in astrophysics and cosmology. Upcoming galaxy surveys (LSST, Euclid) will measure properties of billions of galaxies challenging our ability to perform such counting in a minute-scale time relevant for the usage of simulations. The problem is only limited by efficient access to the data, hence belongs to the big data category. We use the popular Apache Spark framework to address it and design an efficient high-throughput algorithm to deal with hundreds of millions to billions of input data. To optimize it, we revisit the question of non-hierarchical sphere pixelization based on cube symmetries and develop a new one dubbed the ‘Similar Radius Sphere Pixelization’ (SARSPix) with very close to square pixels. It provides the most adapted indexing over the sphere for all distance-related computations. Using LSST-like fast simulations, we compute autocorrelation functions on tomographic bins containing between a hundred million to one billion data points. In each case, we achieve the construction of a standard pair-distance histogram in about 2 min, using a simple algorithm that is shown to scale, over a moderate number of nodes (16–64). This illustrates the potential of this new techniques in the field of astronomy where data access is becoming the main bottleneck. They can be easily adapted to other use-cases as nearest-neighbours search, catalogue cross-match or cluster finding. The software is publicly available from https://github.com/astrolabsoftware/SparkCorr.</description><subject>Astrophysics</subject><subject>Instrumentation and Detectors</subject><subject>Physics</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqGwMnvtkPZsx04yVhVQpEgMwGzZjl2C0iSyk6r596QtHyPL3enVc-_wIHRPYEEgZ8td41VYhl5pJhK4QBFhgsc0F-ISRQCMx1lKyDW6CeETABJGRYTmr0bVVbPFnao8Nu3Q9LhvcWMPPd6qWh1GHAa_t2O4RVdO1cHefe8Zen98eFtv4uLl6Xm9KmJDBe1jkzmudW7MNPJEC0oTx0vmEqezBErgnAHX1AqREkecsry0JZ8uyjKVCc5maH7u_VC17Hy1U36UrarkZlXIYwaMQJpT2JOJXZxZ49sQvHW_DwTkUYo8SZE_Uv7K26H7j_0CkIZkiw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Plaszczynski, S</creator><creator>Campagne, J E</creator><creator>Peloton, J</creator><creator>Arnault, C</creator><general>Oxford University Press</general><general>Oxford University Press (OUP): Policy P - Oxford Open Option A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8560-4449</orcidid><orcidid>https://orcid.org/0000-0002-1590-6927</orcidid><orcidid>https://orcid.org/0000-0002-1278-109X</orcidid></search><sort><creationdate>20220201</creationdate><title>Scaling pair count to next galaxy surveys</title><author>Plaszczynski, S ; Campagne, J E ; Peloton, J ; Arnault, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-c8f5bb9ccbb994b6224f5d3f4fb840d055305b2e6671f1fae5ded5f1f238a8653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astrophysics</topic><topic>Instrumentation and Detectors</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plaszczynski, S</creatorcontrib><creatorcontrib>Campagne, J E</creatorcontrib><creatorcontrib>Peloton, J</creatorcontrib><creatorcontrib>Arnault, C</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Plaszczynski, S</au><au>Campagne, J E</au><au>Peloton, J</au><au>Arnault, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling pair count to next galaxy surveys</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>510</volume><issue>2</issue><spage>3085</spage><epage>3097</epage><pages>3085-3097</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT Counting pairs of galaxies or stars according to their distance is at the core of real-space correlation analyses performed in astrophysics and cosmology. Upcoming galaxy surveys (LSST, Euclid) will measure properties of billions of galaxies challenging our ability to perform such counting in a minute-scale time relevant for the usage of simulations. The problem is only limited by efficient access to the data, hence belongs to the big data category. We use the popular Apache Spark framework to address it and design an efficient high-throughput algorithm to deal with hundreds of millions to billions of input data. To optimize it, we revisit the question of non-hierarchical sphere pixelization based on cube symmetries and develop a new one dubbed the ‘Similar Radius Sphere Pixelization’ (SARSPix) with very close to square pixels. It provides the most adapted indexing over the sphere for all distance-related computations. Using LSST-like fast simulations, we compute autocorrelation functions on tomographic bins containing between a hundred million to one billion data points. In each case, we achieve the construction of a standard pair-distance histogram in about 2 min, using a simple algorithm that is shown to scale, over a moderate number of nodes (16–64). This illustrates the potential of this new techniques in the field of astronomy where data access is becoming the main bottleneck. They can be easily adapted to other use-cases as nearest-neighbours search, catalogue cross-match or cluster finding. The software is publicly available from https://github.com/astrolabsoftware/SparkCorr.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stab3640</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8560-4449</orcidid><orcidid>https://orcid.org/0000-0002-1590-6927</orcidid><orcidid>https://orcid.org/0000-0002-1278-109X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2022-02, Vol.510 (2), p.3085-3097
issn 0035-8711
1365-2966
language eng
recordid cdi_hal_primary_oai_HAL_hal_03107920v1
source Oxford Journals Open Access Collection
subjects Astrophysics
Instrumentation and Detectors
Physics
title Scaling pair count to next galaxy surveys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A44%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20pair%20count%20to%20next%20galaxy%20surveys&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Plaszczynski,%20S&rft.date=2022-02-01&rft.volume=510&rft.issue=2&rft.spage=3085&rft.epage=3097&rft.pages=3085-3097&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stab3640&rft_dat=%3Coup_TOX%3E10.1093/mnras/stab3640%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stab3640&rfr_iscdi=true