Wave propagation in a strongly nonlinear locally resonant granular crystal

In this work, we study the wave propagation in a recently proposed acoustic structure, the locally resonant granular crystal. This structure is composed of a one-dimensional granular crystal of hollow spherical particles in contact, containing linear resonators. The relevant model is presented and e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. D 2018-02, Vol.365, p.27-41
Hauptverfasser: Vorotnikov, K., Starosvetsky, Y., Theocharis, G., Kevrekidis, P.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue
container_start_page 27
container_title Physica. D
container_volume 365
creator Vorotnikov, K.
Starosvetsky, Y.
Theocharis, G.
Kevrekidis, P.G.
description In this work, we study the wave propagation in a recently proposed acoustic structure, the locally resonant granular crystal. This structure is composed of a one-dimensional granular crystal of hollow spherical particles in contact, containing linear resonators. The relevant model is presented and examined through a combination of analytical approximations (based on ODE and nonlinear map analysis) and of numerical results. The generic dynamics of the system involves a degradation of the well-known traveling pulse of the standard Hertzian chain of elastic beads. Nevertheless, the present system is richer, in that as the primary pulse decays, secondary ones emerge and eventually interfere with it creating modulated wavetrains. Remarkably, upon suitable choices of parameters, this interference “distills” a weakly nonlocal solitary wave (a “nanopteron”). This motivates the consideration of such nonlinear structures through a separate Fourier space technique, whose results suggest the existence of such entities not only with a single-side tail, but also with periodic tails on both ends. These tails are found to oscillate with the intrinsic oscillation frequency of the out-of-phase motion between the outer hollow bead and its internal linear attachment.
doi_str_mv 10.1016/j.physd.2017.10.007
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03106074v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167278917305225</els_id><sourcerecordid>S0167278917305225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-d7c1308b5256b370da0d7c248ea43ddef7e5fcb8a7b17cce493f65d86af0627a3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1iyMqT4I4ndgaFCQEGVWECM1sV2WlfGjuxQKf8ehyJGppOee96T7kXomuAFwaS53S_63Zj0gmLCM1lgzE_QjAhOS4EpPUWzbPGScrE8Rxcp7THOJuMz9PIBB1P0MfSwhcEGX1hfQJGGGPzWjYUP3llvIBYuKHCZRJOCBz8U2wj-y-WNimMawF2isw5cMle_c47eHx_e7tfl5vXp-X61KVVViaHUXBGGRVvTumkZxxpwRrQSBiqmtem4qTvVCuAt4UqZasm6ptaigQ43lAObo5vj3R042Uf7CXGUAaxcrzZyYpgR3GBeHUh22dFVMaQUTfcXIFhO1cm9_KlOTtVNMFeXU3fHlMlvHKyJMilrvDLaRqMGqYP9N_8Njr550A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wave propagation in a strongly nonlinear locally resonant granular crystal</title><source>Elsevier ScienceDirect Journals</source><creator>Vorotnikov, K. ; Starosvetsky, Y. ; Theocharis, G. ; Kevrekidis, P.G.</creator><creatorcontrib>Vorotnikov, K. ; Starosvetsky, Y. ; Theocharis, G. ; Kevrekidis, P.G.</creatorcontrib><description>In this work, we study the wave propagation in a recently proposed acoustic structure, the locally resonant granular crystal. This structure is composed of a one-dimensional granular crystal of hollow spherical particles in contact, containing linear resonators. The relevant model is presented and examined through a combination of analytical approximations (based on ODE and nonlinear map analysis) and of numerical results. The generic dynamics of the system involves a degradation of the well-known traveling pulse of the standard Hertzian chain of elastic beads. Nevertheless, the present system is richer, in that as the primary pulse decays, secondary ones emerge and eventually interfere with it creating modulated wavetrains. Remarkably, upon suitable choices of parameters, this interference “distills” a weakly nonlocal solitary wave (a “nanopteron”). This motivates the consideration of such nonlinear structures through a separate Fourier space technique, whose results suggest the existence of such entities not only with a single-side tail, but also with periodic tails on both ends. These tails are found to oscillate with the intrinsic oscillation frequency of the out-of-phase motion between the outer hollow bead and its internal linear attachment.</description><identifier>ISSN: 0167-2789</identifier><identifier>EISSN: 1872-8022</identifier><identifier>DOI: 10.1016/j.physd.2017.10.007</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Engineering Sciences ; Granular chains ; Locally resonant crystals ; Mass-in-mass systems ; Nanoptera ; Physics ; Solitary waves</subject><ispartof>Physica. D, 2018-02, Vol.365, p.27-41</ispartof><rights>2017 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-d7c1308b5256b370da0d7c248ea43ddef7e5fcb8a7b17cce493f65d86af0627a3</citedby><cites>FETCH-LOGICAL-c448t-d7c1308b5256b370da0d7c248ea43ddef7e5fcb8a7b17cce493f65d86af0627a3</cites><orcidid>0000-0002-9086-2055 ; 0000-0003-2984-4197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167278917305225$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03106074$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vorotnikov, K.</creatorcontrib><creatorcontrib>Starosvetsky, Y.</creatorcontrib><creatorcontrib>Theocharis, G.</creatorcontrib><creatorcontrib>Kevrekidis, P.G.</creatorcontrib><title>Wave propagation in a strongly nonlinear locally resonant granular crystal</title><title>Physica. D</title><description>In this work, we study the wave propagation in a recently proposed acoustic structure, the locally resonant granular crystal. This structure is composed of a one-dimensional granular crystal of hollow spherical particles in contact, containing linear resonators. The relevant model is presented and examined through a combination of analytical approximations (based on ODE and nonlinear map analysis) and of numerical results. The generic dynamics of the system involves a degradation of the well-known traveling pulse of the standard Hertzian chain of elastic beads. Nevertheless, the present system is richer, in that as the primary pulse decays, secondary ones emerge and eventually interfere with it creating modulated wavetrains. Remarkably, upon suitable choices of parameters, this interference “distills” a weakly nonlocal solitary wave (a “nanopteron”). This motivates the consideration of such nonlinear structures through a separate Fourier space technique, whose results suggest the existence of such entities not only with a single-side tail, but also with periodic tails on both ends. These tails are found to oscillate with the intrinsic oscillation frequency of the out-of-phase motion between the outer hollow bead and its internal linear attachment.</description><subject>Engineering Sciences</subject><subject>Granular chains</subject><subject>Locally resonant crystals</subject><subject>Mass-in-mass systems</subject><subject>Nanoptera</subject><subject>Physics</subject><subject>Solitary waves</subject><issn>0167-2789</issn><issn>1872-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1iyMqT4I4ndgaFCQEGVWECM1sV2WlfGjuxQKf8ehyJGppOee96T7kXomuAFwaS53S_63Zj0gmLCM1lgzE_QjAhOS4EpPUWzbPGScrE8Rxcp7THOJuMz9PIBB1P0MfSwhcEGX1hfQJGGGPzWjYUP3llvIBYuKHCZRJOCBz8U2wj-y-WNimMawF2isw5cMle_c47eHx_e7tfl5vXp-X61KVVViaHUXBGGRVvTumkZxxpwRrQSBiqmtem4qTvVCuAt4UqZasm6ptaigQ43lAObo5vj3R042Uf7CXGUAaxcrzZyYpgR3GBeHUh22dFVMaQUTfcXIFhO1cm9_KlOTtVNMFeXU3fHlMlvHKyJMilrvDLaRqMGqYP9N_8Njr550A</recordid><startdate>20180215</startdate><enddate>20180215</enddate><creator>Vorotnikov, K.</creator><creator>Starosvetsky, Y.</creator><creator>Theocharis, G.</creator><creator>Kevrekidis, P.G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9086-2055</orcidid><orcidid>https://orcid.org/0000-0003-2984-4197</orcidid></search><sort><creationdate>20180215</creationdate><title>Wave propagation in a strongly nonlinear locally resonant granular crystal</title><author>Vorotnikov, K. ; Starosvetsky, Y. ; Theocharis, G. ; Kevrekidis, P.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-d7c1308b5256b370da0d7c248ea43ddef7e5fcb8a7b17cce493f65d86af0627a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Engineering Sciences</topic><topic>Granular chains</topic><topic>Locally resonant crystals</topic><topic>Mass-in-mass systems</topic><topic>Nanoptera</topic><topic>Physics</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vorotnikov, K.</creatorcontrib><creatorcontrib>Starosvetsky, Y.</creatorcontrib><creatorcontrib>Theocharis, G.</creatorcontrib><creatorcontrib>Kevrekidis, P.G.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physica. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vorotnikov, K.</au><au>Starosvetsky, Y.</au><au>Theocharis, G.</au><au>Kevrekidis, P.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave propagation in a strongly nonlinear locally resonant granular crystal</atitle><jtitle>Physica. D</jtitle><date>2018-02-15</date><risdate>2018</risdate><volume>365</volume><spage>27</spage><epage>41</epage><pages>27-41</pages><issn>0167-2789</issn><eissn>1872-8022</eissn><abstract>In this work, we study the wave propagation in a recently proposed acoustic structure, the locally resonant granular crystal. This structure is composed of a one-dimensional granular crystal of hollow spherical particles in contact, containing linear resonators. The relevant model is presented and examined through a combination of analytical approximations (based on ODE and nonlinear map analysis) and of numerical results. The generic dynamics of the system involves a degradation of the well-known traveling pulse of the standard Hertzian chain of elastic beads. Nevertheless, the present system is richer, in that as the primary pulse decays, secondary ones emerge and eventually interfere with it creating modulated wavetrains. Remarkably, upon suitable choices of parameters, this interference “distills” a weakly nonlocal solitary wave (a “nanopteron”). This motivates the consideration of such nonlinear structures through a separate Fourier space technique, whose results suggest the existence of such entities not only with a single-side tail, but also with periodic tails on both ends. These tails are found to oscillate with the intrinsic oscillation frequency of the out-of-phase motion between the outer hollow bead and its internal linear attachment.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physd.2017.10.007</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9086-2055</orcidid><orcidid>https://orcid.org/0000-0003-2984-4197</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-2789
ispartof Physica. D, 2018-02, Vol.365, p.27-41
issn 0167-2789
1872-8022
language eng
recordid cdi_hal_primary_oai_HAL_hal_03106074v1
source Elsevier ScienceDirect Journals
subjects Engineering Sciences
Granular chains
Locally resonant crystals
Mass-in-mass systems
Nanoptera
Physics
Solitary waves
title Wave propagation in a strongly nonlinear locally resonant granular crystal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave%20propagation%20in%20a%20strongly%20nonlinear%20locally%20resonant%20granular%20crystal&rft.jtitle=Physica.%20D&rft.au=Vorotnikov,%20K.&rft.date=2018-02-15&rft.volume=365&rft.spage=27&rft.epage=41&rft.pages=27-41&rft.issn=0167-2789&rft.eissn=1872-8022&rft_id=info:doi/10.1016/j.physd.2017.10.007&rft_dat=%3Celsevier_hal_p%3ES0167278917305225%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167278917305225&rfr_iscdi=true