Wavelet adaptive proper orthogonal decomposition for large-scale flow data
The proper orthogonal decomposition (POD) is a powerful classical tool in fluid mechanics used, for instance, for model reduction and extraction of coherent flow features. However, its applicability to high-resolution data, as produced by three-dimensional direct numerical simulations, is limited ow...
Gespeichert in:
Veröffentlicht in: | Advances in computational mathematics 2022-04, Vol.48 (2), Article 10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Advances in computational mathematics |
container_volume | 48 |
creator | Krah, Philipp Engels, Thomas Schneider, Kai Reiss, Julius |
description | The proper orthogonal decomposition (POD) is a powerful classical tool in fluid mechanics used, for instance, for model reduction and extraction of coherent flow features. However, its applicability to high-resolution data, as produced by three-dimensional direct numerical simulations, is limited owing to its computational complexity. Here, we propose a wavelet-based adaptive version of the POD (the wPOD), in order to overcome this limitation. The amount of data to be analyzed is reduced by compressing them using biorthogonal wavelets, yielding a sparse representation while conveniently providing control of the compression error. Numerical analysis shows how the distinct error contributions of wavelet compression and POD truncation can be balanced under certain assumptions, allowing us to efficiently process high-resolution data from three-dimensional simulations of flow problems. Using a synthetic academic test case, we compare our algorithm with the randomized singular value decomposition. Furthermore, we demonstrate the ability of our method analyzing data of a two-dimensional wake flow and a three-dimensional flow generated by a flapping insect computed with direct numerical simulation. |
doi_str_mv | 10.1007/s10444-021-09922-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03104564v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2630281370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-b1856002ee81af762c70dcc4658c15623cf32b5bd2bf243769389b64ba122313</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEuXjDzBZYmIwnM-JnYxVBRRUiaUSo-U4TpsqrYMdivj3uATBxnTW-Xlf6R5CrjjccgB1FzlkWcYAOYOyRGR4RCY8V8jK9HGc3sBLprgsTslZjBsAKKXKJ-T51exd5wZqatMP7d7RPvjeBerDsPYrvzMdrZ31297Hdmj9jjY-0M6ElWPRms7RpvMftDaDuSAnjemiu_yZ52T5cL-czdni5fFpNl0wK0o1sIoXuQRA5wpuGiXRKqitzWReWJ5LFLYRWOVVjVWDmVCyFEVZyawyHFFwcU5uxtq16XQf2q0Jn9qbVs-nC33YgUgycpntD-z1yKaj3t5dHPTGv4d0U9QoBWDBhYJE4UjZ4GMMrvmt5aAPevWoVye9-luvxhQSYygmeLdy4a_6n9QXH1h7vg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630281370</pqid></control><display><type>article</type><title>Wavelet adaptive proper orthogonal decomposition for large-scale flow data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Krah, Philipp ; Engels, Thomas ; Schneider, Kai ; Reiss, Julius</creator><creatorcontrib>Krah, Philipp ; Engels, Thomas ; Schneider, Kai ; Reiss, Julius</creatorcontrib><description>The proper orthogonal decomposition (POD) is a powerful classical tool in fluid mechanics used, for instance, for model reduction and extraction of coherent flow features. However, its applicability to high-resolution data, as produced by three-dimensional direct numerical simulations, is limited owing to its computational complexity. Here, we propose a wavelet-based adaptive version of the POD (the wPOD), in order to overcome this limitation. The amount of data to be analyzed is reduced by compressing them using biorthogonal wavelets, yielding a sparse representation while conveniently providing control of the compression error. Numerical analysis shows how the distinct error contributions of wavelet compression and POD truncation can be balanced under certain assumptions, allowing us to efficiently process high-resolution data from three-dimensional simulations of flow problems. Using a synthetic academic test case, we compare our algorithm with the randomized singular value decomposition. Furthermore, we demonstrate the ability of our method analyzing data of a two-dimensional wake flow and a three-dimensional flow generated by a flapping insect computed with direct numerical simulation.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-021-09922-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Computational Science and Engineering ; Computer simulation ; Data analysis ; Decomposition ; Direct numerical simulation ; Engineering Sciences ; Error analysis ; Feature extraction ; Flapping ; Fluid flow ; Fluid mechanics ; Fluids mechanics ; High resolution ; Insects ; Mathematical and Computational Biology ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Mechanics ; Methodology ; Model reduction ; Numerical Analysis ; Proper Orthogonal Decomposition ; Singular value decomposition ; Statistics ; Three dimensional flow ; Two dimensional analysis ; Two dimensional flow ; Visualization ; Wavelet analysis</subject><ispartof>Advances in computational mathematics, 2022-04, Vol.48 (2), Article 10</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-b1856002ee81af762c70dcc4658c15623cf32b5bd2bf243769389b64ba122313</citedby><cites>FETCH-LOGICAL-c397t-b1856002ee81af762c70dcc4658c15623cf32b5bd2bf243769389b64ba122313</cites><orcidid>0000-0002-9098-1054 ; 0000-0001-8982-4230 ; 0000-0003-3692-5390 ; 0000-0003-1243-6621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10444-021-09922-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10444-021-09922-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03104564$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Krah, Philipp</creatorcontrib><creatorcontrib>Engels, Thomas</creatorcontrib><creatorcontrib>Schneider, Kai</creatorcontrib><creatorcontrib>Reiss, Julius</creatorcontrib><title>Wavelet adaptive proper orthogonal decomposition for large-scale flow data</title><title>Advances in computational mathematics</title><addtitle>Adv Comput Math</addtitle><description>The proper orthogonal decomposition (POD) is a powerful classical tool in fluid mechanics used, for instance, for model reduction and extraction of coherent flow features. However, its applicability to high-resolution data, as produced by three-dimensional direct numerical simulations, is limited owing to its computational complexity. Here, we propose a wavelet-based adaptive version of the POD (the wPOD), in order to overcome this limitation. The amount of data to be analyzed is reduced by compressing them using biorthogonal wavelets, yielding a sparse representation while conveniently providing control of the compression error. Numerical analysis shows how the distinct error contributions of wavelet compression and POD truncation can be balanced under certain assumptions, allowing us to efficiently process high-resolution data from three-dimensional simulations of flow problems. Using a synthetic academic test case, we compare our algorithm with the randomized singular value decomposition. Furthermore, we demonstrate the ability of our method analyzing data of a two-dimensional wake flow and a three-dimensional flow generated by a flapping insect computed with direct numerical simulation.</description><subject>Algorithms</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computational Science and Engineering</subject><subject>Computer simulation</subject><subject>Data analysis</subject><subject>Decomposition</subject><subject>Direct numerical simulation</subject><subject>Engineering Sciences</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Flapping</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids mechanics</subject><subject>High resolution</subject><subject>Insects</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanics</subject><subject>Methodology</subject><subject>Model reduction</subject><subject>Numerical Analysis</subject><subject>Proper Orthogonal Decomposition</subject><subject>Singular value decomposition</subject><subject>Statistics</subject><subject>Three dimensional flow</subject><subject>Two dimensional analysis</subject><subject>Two dimensional flow</subject><subject>Visualization</subject><subject>Wavelet analysis</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kD1PwzAQhi0EEuXjDzBZYmIwnM-JnYxVBRRUiaUSo-U4TpsqrYMdivj3uATBxnTW-Xlf6R5CrjjccgB1FzlkWcYAOYOyRGR4RCY8V8jK9HGc3sBLprgsTslZjBsAKKXKJ-T51exd5wZqatMP7d7RPvjeBerDsPYrvzMdrZ31297Hdmj9jjY-0M6ElWPRms7RpvMftDaDuSAnjemiu_yZ52T5cL-czdni5fFpNl0wK0o1sIoXuQRA5wpuGiXRKqitzWReWJ5LFLYRWOVVjVWDmVCyFEVZyawyHFFwcU5uxtq16XQf2q0Jn9qbVs-nC33YgUgycpntD-z1yKaj3t5dHPTGv4d0U9QoBWDBhYJE4UjZ4GMMrvmt5aAPevWoVye9-luvxhQSYygmeLdy4a_6n9QXH1h7vg</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Krah, Philipp</creator><creator>Engels, Thomas</creator><creator>Schneider, Kai</creator><creator>Reiss, Julius</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9098-1054</orcidid><orcidid>https://orcid.org/0000-0001-8982-4230</orcidid><orcidid>https://orcid.org/0000-0003-3692-5390</orcidid><orcidid>https://orcid.org/0000-0003-1243-6621</orcidid></search><sort><creationdate>20220401</creationdate><title>Wavelet adaptive proper orthogonal decomposition for large-scale flow data</title><author>Krah, Philipp ; Engels, Thomas ; Schneider, Kai ; Reiss, Julius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-b1856002ee81af762c70dcc4658c15623cf32b5bd2bf243769389b64ba122313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computational Science and Engineering</topic><topic>Computer simulation</topic><topic>Data analysis</topic><topic>Decomposition</topic><topic>Direct numerical simulation</topic><topic>Engineering Sciences</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Flapping</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids mechanics</topic><topic>High resolution</topic><topic>Insects</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanics</topic><topic>Methodology</topic><topic>Model reduction</topic><topic>Numerical Analysis</topic><topic>Proper Orthogonal Decomposition</topic><topic>Singular value decomposition</topic><topic>Statistics</topic><topic>Three dimensional flow</topic><topic>Two dimensional analysis</topic><topic>Two dimensional flow</topic><topic>Visualization</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krah, Philipp</creatorcontrib><creatorcontrib>Engels, Thomas</creatorcontrib><creatorcontrib>Schneider, Kai</creatorcontrib><creatorcontrib>Reiss, Julius</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krah, Philipp</au><au>Engels, Thomas</au><au>Schneider, Kai</au><au>Reiss, Julius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelet adaptive proper orthogonal decomposition for large-scale flow data</atitle><jtitle>Advances in computational mathematics</jtitle><stitle>Adv Comput Math</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>48</volume><issue>2</issue><artnum>10</artnum><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>The proper orthogonal decomposition (POD) is a powerful classical tool in fluid mechanics used, for instance, for model reduction and extraction of coherent flow features. However, its applicability to high-resolution data, as produced by three-dimensional direct numerical simulations, is limited owing to its computational complexity. Here, we propose a wavelet-based adaptive version of the POD (the wPOD), in order to overcome this limitation. The amount of data to be analyzed is reduced by compressing them using biorthogonal wavelets, yielding a sparse representation while conveniently providing control of the compression error. Numerical analysis shows how the distinct error contributions of wavelet compression and POD truncation can be balanced under certain assumptions, allowing us to efficiently process high-resolution data from three-dimensional simulations of flow problems. Using a synthetic academic test case, we compare our algorithm with the randomized singular value decomposition. Furthermore, we demonstrate the ability of our method analyzing data of a two-dimensional wake flow and a three-dimensional flow generated by a flapping insect computed with direct numerical simulation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10444-021-09922-2</doi><orcidid>https://orcid.org/0000-0002-9098-1054</orcidid><orcidid>https://orcid.org/0000-0001-8982-4230</orcidid><orcidid>https://orcid.org/0000-0003-3692-5390</orcidid><orcidid>https://orcid.org/0000-0003-1243-6621</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1019-7168 |
ispartof | Advances in computational mathematics, 2022-04, Vol.48 (2), Article 10 |
issn | 1019-7168 1572-9044 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03104564v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Computational mathematics Computational Mathematics and Numerical Analysis Computational Science and Engineering Computer simulation Data analysis Decomposition Direct numerical simulation Engineering Sciences Error analysis Feature extraction Flapping Fluid flow Fluid mechanics Fluids mechanics High resolution Insects Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematical models Mathematics Mathematics and Statistics Mechanics Methodology Model reduction Numerical Analysis Proper Orthogonal Decomposition Singular value decomposition Statistics Three dimensional flow Two dimensional analysis Two dimensional flow Visualization Wavelet analysis |
title | Wavelet adaptive proper orthogonal decomposition for large-scale flow data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelet%20adaptive%20proper%20orthogonal%20decomposition%20for%20large-scale%20flow%20data&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=Krah,%20Philipp&rft.date=2022-04-01&rft.volume=48&rft.issue=2&rft.artnum=10&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-021-09922-2&rft_dat=%3Cproquest_hal_p%3E2630281370%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630281370&rft_id=info:pmid/&rfr_iscdi=true |