Wavelet adaptive proper orthogonal decomposition for large-scale flow data

The proper orthogonal decomposition (POD) is a powerful classical tool in fluid mechanics used, for instance, for model reduction and extraction of coherent flow features. However, its applicability to high-resolution data, as produced by three-dimensional direct numerical simulations, is limited ow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics 2022-04, Vol.48 (2), Article 10
Hauptverfasser: Krah, Philipp, Engels, Thomas, Schneider, Kai, Reiss, Julius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Advances in computational mathematics
container_volume 48
creator Krah, Philipp
Engels, Thomas
Schneider, Kai
Reiss, Julius
description The proper orthogonal decomposition (POD) is a powerful classical tool in fluid mechanics used, for instance, for model reduction and extraction of coherent flow features. However, its applicability to high-resolution data, as produced by three-dimensional direct numerical simulations, is limited owing to its computational complexity. Here, we propose a wavelet-based adaptive version of the POD (the wPOD), in order to overcome this limitation. The amount of data to be analyzed is reduced by compressing them using biorthogonal wavelets, yielding a sparse representation while conveniently providing control of the compression error. Numerical analysis shows how the distinct error contributions of wavelet compression and POD truncation can be balanced under certain assumptions, allowing us to efficiently process high-resolution data from three-dimensional simulations of flow problems. Using a synthetic academic test case, we compare our algorithm with the randomized singular value decomposition. Furthermore, we demonstrate the ability of our method analyzing data of a two-dimensional wake flow and a three-dimensional flow generated by a flapping insect computed with direct numerical simulation.
doi_str_mv 10.1007/s10444-021-09922-2
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03104564v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2630281370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-b1856002ee81af762c70dcc4658c15623cf32b5bd2bf243769389b64ba122313</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEuXjDzBZYmIwnM-JnYxVBRRUiaUSo-U4TpsqrYMdivj3uATBxnTW-Xlf6R5CrjjccgB1FzlkWcYAOYOyRGR4RCY8V8jK9HGc3sBLprgsTslZjBsAKKXKJ-T51exd5wZqatMP7d7RPvjeBerDsPYrvzMdrZ31297Hdmj9jjY-0M6ElWPRms7RpvMftDaDuSAnjemiu_yZ52T5cL-czdni5fFpNl0wK0o1sIoXuQRA5wpuGiXRKqitzWReWJ5LFLYRWOVVjVWDmVCyFEVZyawyHFFwcU5uxtq16XQf2q0Jn9qbVs-nC33YgUgycpntD-z1yKaj3t5dHPTGv4d0U9QoBWDBhYJE4UjZ4GMMrvmt5aAPevWoVye9-luvxhQSYygmeLdy4a_6n9QXH1h7vg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630281370</pqid></control><display><type>article</type><title>Wavelet adaptive proper orthogonal decomposition for large-scale flow data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Krah, Philipp ; Engels, Thomas ; Schneider, Kai ; Reiss, Julius</creator><creatorcontrib>Krah, Philipp ; Engels, Thomas ; Schneider, Kai ; Reiss, Julius</creatorcontrib><description>The proper orthogonal decomposition (POD) is a powerful classical tool in fluid mechanics used, for instance, for model reduction and extraction of coherent flow features. However, its applicability to high-resolution data, as produced by three-dimensional direct numerical simulations, is limited owing to its computational complexity. Here, we propose a wavelet-based adaptive version of the POD (the wPOD), in order to overcome this limitation. The amount of data to be analyzed is reduced by compressing them using biorthogonal wavelets, yielding a sparse representation while conveniently providing control of the compression error. Numerical analysis shows how the distinct error contributions of wavelet compression and POD truncation can be balanced under certain assumptions, allowing us to efficiently process high-resolution data from three-dimensional simulations of flow problems. Using a synthetic academic test case, we compare our algorithm with the randomized singular value decomposition. Furthermore, we demonstrate the ability of our method analyzing data of a two-dimensional wake flow and a three-dimensional flow generated by a flapping insect computed with direct numerical simulation.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-021-09922-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Computational Science and Engineering ; Computer simulation ; Data analysis ; Decomposition ; Direct numerical simulation ; Engineering Sciences ; Error analysis ; Feature extraction ; Flapping ; Fluid flow ; Fluid mechanics ; Fluids mechanics ; High resolution ; Insects ; Mathematical and Computational Biology ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Mechanics ; Methodology ; Model reduction ; Numerical Analysis ; Proper Orthogonal Decomposition ; Singular value decomposition ; Statistics ; Three dimensional flow ; Two dimensional analysis ; Two dimensional flow ; Visualization ; Wavelet analysis</subject><ispartof>Advances in computational mathematics, 2022-04, Vol.48 (2), Article 10</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-b1856002ee81af762c70dcc4658c15623cf32b5bd2bf243769389b64ba122313</citedby><cites>FETCH-LOGICAL-c397t-b1856002ee81af762c70dcc4658c15623cf32b5bd2bf243769389b64ba122313</cites><orcidid>0000-0002-9098-1054 ; 0000-0001-8982-4230 ; 0000-0003-3692-5390 ; 0000-0003-1243-6621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10444-021-09922-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10444-021-09922-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03104564$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Krah, Philipp</creatorcontrib><creatorcontrib>Engels, Thomas</creatorcontrib><creatorcontrib>Schneider, Kai</creatorcontrib><creatorcontrib>Reiss, Julius</creatorcontrib><title>Wavelet adaptive proper orthogonal decomposition for large-scale flow data</title><title>Advances in computational mathematics</title><addtitle>Adv Comput Math</addtitle><description>The proper orthogonal decomposition (POD) is a powerful classical tool in fluid mechanics used, for instance, for model reduction and extraction of coherent flow features. However, its applicability to high-resolution data, as produced by three-dimensional direct numerical simulations, is limited owing to its computational complexity. Here, we propose a wavelet-based adaptive version of the POD (the wPOD), in order to overcome this limitation. The amount of data to be analyzed is reduced by compressing them using biorthogonal wavelets, yielding a sparse representation while conveniently providing control of the compression error. Numerical analysis shows how the distinct error contributions of wavelet compression and POD truncation can be balanced under certain assumptions, allowing us to efficiently process high-resolution data from three-dimensional simulations of flow problems. Using a synthetic academic test case, we compare our algorithm with the randomized singular value decomposition. Furthermore, we demonstrate the ability of our method analyzing data of a two-dimensional wake flow and a three-dimensional flow generated by a flapping insect computed with direct numerical simulation.</description><subject>Algorithms</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computational Science and Engineering</subject><subject>Computer simulation</subject><subject>Data analysis</subject><subject>Decomposition</subject><subject>Direct numerical simulation</subject><subject>Engineering Sciences</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Flapping</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids mechanics</subject><subject>High resolution</subject><subject>Insects</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanics</subject><subject>Methodology</subject><subject>Model reduction</subject><subject>Numerical Analysis</subject><subject>Proper Orthogonal Decomposition</subject><subject>Singular value decomposition</subject><subject>Statistics</subject><subject>Three dimensional flow</subject><subject>Two dimensional analysis</subject><subject>Two dimensional flow</subject><subject>Visualization</subject><subject>Wavelet analysis</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kD1PwzAQhi0EEuXjDzBZYmIwnM-JnYxVBRRUiaUSo-U4TpsqrYMdivj3uATBxnTW-Xlf6R5CrjjccgB1FzlkWcYAOYOyRGR4RCY8V8jK9HGc3sBLprgsTslZjBsAKKXKJ-T51exd5wZqatMP7d7RPvjeBerDsPYrvzMdrZ31297Hdmj9jjY-0M6ElWPRms7RpvMftDaDuSAnjemiu_yZ52T5cL-czdni5fFpNl0wK0o1sIoXuQRA5wpuGiXRKqitzWReWJ5LFLYRWOVVjVWDmVCyFEVZyawyHFFwcU5uxtq16XQf2q0Jn9qbVs-nC33YgUgycpntD-z1yKaj3t5dHPTGv4d0U9QoBWDBhYJE4UjZ4GMMrvmt5aAPevWoVye9-luvxhQSYygmeLdy4a_6n9QXH1h7vg</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Krah, Philipp</creator><creator>Engels, Thomas</creator><creator>Schneider, Kai</creator><creator>Reiss, Julius</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9098-1054</orcidid><orcidid>https://orcid.org/0000-0001-8982-4230</orcidid><orcidid>https://orcid.org/0000-0003-3692-5390</orcidid><orcidid>https://orcid.org/0000-0003-1243-6621</orcidid></search><sort><creationdate>20220401</creationdate><title>Wavelet adaptive proper orthogonal decomposition for large-scale flow data</title><author>Krah, Philipp ; Engels, Thomas ; Schneider, Kai ; Reiss, Julius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-b1856002ee81af762c70dcc4658c15623cf32b5bd2bf243769389b64ba122313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computational Science and Engineering</topic><topic>Computer simulation</topic><topic>Data analysis</topic><topic>Decomposition</topic><topic>Direct numerical simulation</topic><topic>Engineering Sciences</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Flapping</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids mechanics</topic><topic>High resolution</topic><topic>Insects</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanics</topic><topic>Methodology</topic><topic>Model reduction</topic><topic>Numerical Analysis</topic><topic>Proper Orthogonal Decomposition</topic><topic>Singular value decomposition</topic><topic>Statistics</topic><topic>Three dimensional flow</topic><topic>Two dimensional analysis</topic><topic>Two dimensional flow</topic><topic>Visualization</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krah, Philipp</creatorcontrib><creatorcontrib>Engels, Thomas</creatorcontrib><creatorcontrib>Schneider, Kai</creatorcontrib><creatorcontrib>Reiss, Julius</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krah, Philipp</au><au>Engels, Thomas</au><au>Schneider, Kai</au><au>Reiss, Julius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelet adaptive proper orthogonal decomposition for large-scale flow data</atitle><jtitle>Advances in computational mathematics</jtitle><stitle>Adv Comput Math</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>48</volume><issue>2</issue><artnum>10</artnum><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>The proper orthogonal decomposition (POD) is a powerful classical tool in fluid mechanics used, for instance, for model reduction and extraction of coherent flow features. However, its applicability to high-resolution data, as produced by three-dimensional direct numerical simulations, is limited owing to its computational complexity. Here, we propose a wavelet-based adaptive version of the POD (the wPOD), in order to overcome this limitation. The amount of data to be analyzed is reduced by compressing them using biorthogonal wavelets, yielding a sparse representation while conveniently providing control of the compression error. Numerical analysis shows how the distinct error contributions of wavelet compression and POD truncation can be balanced under certain assumptions, allowing us to efficiently process high-resolution data from three-dimensional simulations of flow problems. Using a synthetic academic test case, we compare our algorithm with the randomized singular value decomposition. Furthermore, we demonstrate the ability of our method analyzing data of a two-dimensional wake flow and a three-dimensional flow generated by a flapping insect computed with direct numerical simulation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10444-021-09922-2</doi><orcidid>https://orcid.org/0000-0002-9098-1054</orcidid><orcidid>https://orcid.org/0000-0001-8982-4230</orcidid><orcidid>https://orcid.org/0000-0003-3692-5390</orcidid><orcidid>https://orcid.org/0000-0003-1243-6621</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1019-7168
ispartof Advances in computational mathematics, 2022-04, Vol.48 (2), Article 10
issn 1019-7168
1572-9044
language eng
recordid cdi_hal_primary_oai_HAL_hal_03104564v1
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Computational mathematics
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Computer simulation
Data analysis
Decomposition
Direct numerical simulation
Engineering Sciences
Error analysis
Feature extraction
Flapping
Fluid flow
Fluid mechanics
Fluids mechanics
High resolution
Insects
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Mechanics
Methodology
Model reduction
Numerical Analysis
Proper Orthogonal Decomposition
Singular value decomposition
Statistics
Three dimensional flow
Two dimensional analysis
Two dimensional flow
Visualization
Wavelet analysis
title Wavelet adaptive proper orthogonal decomposition for large-scale flow data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelet%20adaptive%20proper%20orthogonal%20decomposition%20for%20large-scale%20flow%20data&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=Krah,%20Philipp&rft.date=2022-04-01&rft.volume=48&rft.issue=2&rft.artnum=10&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-021-09922-2&rft_dat=%3Cproquest_hal_p%3E2630281370%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630281370&rft_id=info:pmid/&rfr_iscdi=true