Polyphase tectono-magmatic evolution during mantle exhumation in an ultra-distal, magma-poor rift domain: example of the fossil Platta ophiolite, SE Switzerland
Despite the fact that many studies have investigated mantle exhumation at ultra-slow-spreading ridges and magma-poor rifted margins, there are still numerous questions concerning the 3D architecture, magmatic, fluid, and thermal evolution of these domains that remain unexplained. Indeed, it has been...
Gespeichert in:
Veröffentlicht in: | International journal of earth sciences : Geologische Rundschau 2019-11, Vol.108 (8), p.2443-2467 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2467 |
---|---|
container_issue | 8 |
container_start_page | 2443 |
container_title | International journal of earth sciences : Geologische Rundschau |
container_volume | 108 |
creator | Epin, M.-E. Manatschal, G. Amman, M. Ribes, C. Clausse, A. Guffon, T. Lescanne, M. |
description | Despite the fact that many studies have investigated mantle exhumation at ultra-slow-spreading ridges and magma-poor rifted margins, there are still numerous questions concerning the 3D architecture, magmatic, fluid, and thermal evolution of these domains that remain unexplained. Indeed, it has been observed in seismic data from ultra-distal magma-poor rifted margins that top basement is heavily structured and complex; however, the associated morpho-tectonic and magmatic processes remain ill constrained. The aim of this study is to describe the 3D top basement morphology, timing, and processes controlling the formation of an exhumed mantle domain preserved over about 200 km
2
in the Platta nappe in SE Switzerland. Detailed mapping of parts of the Platta nappe enabled to document the top basement architecture of an exhumed mantle domain, and to investigate its link to later, rift/oceanic structures, magmatic additions, and hydrothermal fluid systems. Our observations show: (1) a polyphase deformation history associated with mantle exhumation along exhumation faults overprinted by later high-angle normal faults, (2) a structured top basement morphology capped by magmato-sedimentary sequences, (3) a tectono-magmatic evolution that includes gabbros, emplaced at deeper levels and subsequently exhumed and overlain by younger extrusive magmatic additions, and (4) fluid systems related to serpentinization, calcification, hydrothermal vents, rodingitization, and spilitization affecting exhumed mantle and associated magmatic rocks. The overall observations provide new information on the temporal and spatial evolution of the tectonic and magmatic processes and their link to hydrothermal and sedimentary systems controlling the formation of ultra-distal, magma-poor rifted margins, and lithospheric breakup. |
doi_str_mv | 10.1007/s00531-019-01772-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03102454v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316455300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-5708ca64b50230a95bd9a3c25f2929dde4e443be5f808b5c650f91adfd2155333</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEEqX0BVhZYoVUw_jv5oZdVfUH6UpUKl1bcxO7ceXEwXYK7dP0UXEaVHYsLFvj8x3NzKmqDww-M4D6SwJQglFgTTl1zSm8qg6YFDUVfMNfv7yVfFu9S-kOYCmwg-rpKviHqcdkSDZtDmOgA94OmF1LzH3wc3ZhJN0c3XhLBhyzN8T87udFUT7cSHAks88RaedSRn9Mnnk6hRBJdDaTLgzoxq8Fw2EqeLAk94bYkJLz5MpjzkjC1LvgXTbH5PqMXP9y-dFEj2P3vnpj0Sdz9Pc-rG7Oz36cXtLd94tvpyc72golMlU1bFvcyL0CLgAbte8aFC1Xlje86TojjZRib5Tdwnav2o0C2zDsbMeZUkKIw-rT6tuj11N0A8YHHdDpy5OdXmogGHCp5D0r2o-rdorh52xS1ndhjmNpT3PBNrIYAhQVX1VtLKNGY19sGeglNb2mpktq-jk1vUBihdK0rNzEf9b_of4AbxmcNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316455300</pqid></control><display><type>article</type><title>Polyphase tectono-magmatic evolution during mantle exhumation in an ultra-distal, magma-poor rift domain: example of the fossil Platta ophiolite, SE Switzerland</title><source>SpringerNature Journals</source><creator>Epin, M.-E. ; Manatschal, G. ; Amman, M. ; Ribes, C. ; Clausse, A. ; Guffon, T. ; Lescanne, M.</creator><creatorcontrib>Epin, M.-E. ; Manatschal, G. ; Amman, M. ; Ribes, C. ; Clausse, A. ; Guffon, T. ; Lescanne, M.</creatorcontrib><description>Despite the fact that many studies have investigated mantle exhumation at ultra-slow-spreading ridges and magma-poor rifted margins, there are still numerous questions concerning the 3D architecture, magmatic, fluid, and thermal evolution of these domains that remain unexplained. Indeed, it has been observed in seismic data from ultra-distal magma-poor rifted margins that top basement is heavily structured and complex; however, the associated morpho-tectonic and magmatic processes remain ill constrained. The aim of this study is to describe the 3D top basement morphology, timing, and processes controlling the formation of an exhumed mantle domain preserved over about 200 km
2
in the Platta nappe in SE Switzerland. Detailed mapping of parts of the Platta nappe enabled to document the top basement architecture of an exhumed mantle domain, and to investigate its link to later, rift/oceanic structures, magmatic additions, and hydrothermal fluid systems. Our observations show: (1) a polyphase deformation history associated with mantle exhumation along exhumation faults overprinted by later high-angle normal faults, (2) a structured top basement morphology capped by magmato-sedimentary sequences, (3) a tectono-magmatic evolution that includes gabbros, emplaced at deeper levels and subsequently exhumed and overlain by younger extrusive magmatic additions, and (4) fluid systems related to serpentinization, calcification, hydrothermal vents, rodingitization, and spilitization affecting exhumed mantle and associated magmatic rocks. The overall observations provide new information on the temporal and spatial evolution of the tectonic and magmatic processes and their link to hydrothermal and sedimentary systems controlling the formation of ultra-distal, magma-poor rifted margins, and lithospheric breakup.</description><identifier>ISSN: 1437-3254</identifier><identifier>EISSN: 1437-3262</identifier><identifier>DOI: 10.1007/s00531-019-01772-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Architecture ; Calcification ; Deformation ; Domains ; Earth and Environmental Science ; Earth Sciences ; Evolution ; Fault lines ; Fossils ; Gabbros ; Geochemistry ; Geological faults ; Geology ; Geophysics ; Geophysics/Geodesy ; Hydrothermal plumes ; Hydrothermal springs ; Hydrothermal vents ; Lava ; Magma ; Mantle ; Mapping ; Mineral Resources ; Morphology ; Review Article ; Ridges ; Sciences of the Universe ; Sedimentology ; Seismic data ; Seismological data ; Serpentinization ; Spreading centres ; Structural Geology ; Tectonics ; Thermal evolution ; Vents</subject><ispartof>International journal of earth sciences : Geologische Rundschau, 2019-11, Vol.108 (8), p.2443-2467</ispartof><rights>Geologische Vereinigung e.V. (GV) 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-5708ca64b50230a95bd9a3c25f2929dde4e443be5f808b5c650f91adfd2155333</citedby><cites>FETCH-LOGICAL-c353t-5708ca64b50230a95bd9a3c25f2929dde4e443be5f808b5c650f91adfd2155333</cites><orcidid>0000-0003-0528-8149 ; 0000-0001-7812-1193 ; 0000-0002-7979-9526 ; 0000-0003-3834-2033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00531-019-01772-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00531-019-01772-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,782,786,887,27931,27932,41495,42564,51326</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03102454$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Epin, M.-E.</creatorcontrib><creatorcontrib>Manatschal, G.</creatorcontrib><creatorcontrib>Amman, M.</creatorcontrib><creatorcontrib>Ribes, C.</creatorcontrib><creatorcontrib>Clausse, A.</creatorcontrib><creatorcontrib>Guffon, T.</creatorcontrib><creatorcontrib>Lescanne, M.</creatorcontrib><title>Polyphase tectono-magmatic evolution during mantle exhumation in an ultra-distal, magma-poor rift domain: example of the fossil Platta ophiolite, SE Switzerland</title><title>International journal of earth sciences : Geologische Rundschau</title><addtitle>Int J Earth Sci (Geol Rundsch)</addtitle><description>Despite the fact that many studies have investigated mantle exhumation at ultra-slow-spreading ridges and magma-poor rifted margins, there are still numerous questions concerning the 3D architecture, magmatic, fluid, and thermal evolution of these domains that remain unexplained. Indeed, it has been observed in seismic data from ultra-distal magma-poor rifted margins that top basement is heavily structured and complex; however, the associated morpho-tectonic and magmatic processes remain ill constrained. The aim of this study is to describe the 3D top basement morphology, timing, and processes controlling the formation of an exhumed mantle domain preserved over about 200 km
2
in the Platta nappe in SE Switzerland. Detailed mapping of parts of the Platta nappe enabled to document the top basement architecture of an exhumed mantle domain, and to investigate its link to later, rift/oceanic structures, magmatic additions, and hydrothermal fluid systems. Our observations show: (1) a polyphase deformation history associated with mantle exhumation along exhumation faults overprinted by later high-angle normal faults, (2) a structured top basement morphology capped by magmato-sedimentary sequences, (3) a tectono-magmatic evolution that includes gabbros, emplaced at deeper levels and subsequently exhumed and overlain by younger extrusive magmatic additions, and (4) fluid systems related to serpentinization, calcification, hydrothermal vents, rodingitization, and spilitization affecting exhumed mantle and associated magmatic rocks. The overall observations provide new information on the temporal and spatial evolution of the tectonic and magmatic processes and their link to hydrothermal and sedimentary systems controlling the formation of ultra-distal, magma-poor rifted margins, and lithospheric breakup.</description><subject>Architecture</subject><subject>Calcification</subject><subject>Deformation</subject><subject>Domains</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Evolution</subject><subject>Fault lines</subject><subject>Fossils</subject><subject>Gabbros</subject><subject>Geochemistry</subject><subject>Geological faults</subject><subject>Geology</subject><subject>Geophysics</subject><subject>Geophysics/Geodesy</subject><subject>Hydrothermal plumes</subject><subject>Hydrothermal springs</subject><subject>Hydrothermal vents</subject><subject>Lava</subject><subject>Magma</subject><subject>Mantle</subject><subject>Mapping</subject><subject>Mineral Resources</subject><subject>Morphology</subject><subject>Review Article</subject><subject>Ridges</subject><subject>Sciences of the Universe</subject><subject>Sedimentology</subject><subject>Seismic data</subject><subject>Seismological data</subject><subject>Serpentinization</subject><subject>Spreading centres</subject><subject>Structural Geology</subject><subject>Tectonics</subject><subject>Thermal evolution</subject><subject>Vents</subject><issn>1437-3254</issn><issn>1437-3262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhSMEEqX0BVhZYoVUw_jv5oZdVfUH6UpUKl1bcxO7ceXEwXYK7dP0UXEaVHYsLFvj8x3NzKmqDww-M4D6SwJQglFgTTl1zSm8qg6YFDUVfMNfv7yVfFu9S-kOYCmwg-rpKviHqcdkSDZtDmOgA94OmF1LzH3wc3ZhJN0c3XhLBhyzN8T87udFUT7cSHAks88RaedSRn9Mnnk6hRBJdDaTLgzoxq8Fw2EqeLAk94bYkJLz5MpjzkjC1LvgXTbH5PqMXP9y-dFEj2P3vnpj0Sdz9Pc-rG7Oz36cXtLd94tvpyc72golMlU1bFvcyL0CLgAbte8aFC1Xlje86TojjZRib5Tdwnav2o0C2zDsbMeZUkKIw-rT6tuj11N0A8YHHdDpy5OdXmogGHCp5D0r2o-rdorh52xS1ndhjmNpT3PBNrIYAhQVX1VtLKNGY19sGeglNb2mpktq-jk1vUBihdK0rNzEf9b_of4AbxmcNw</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Epin, M.-E.</creator><creator>Manatschal, G.</creator><creator>Amman, M.</creator><creator>Ribes, C.</creator><creator>Clausse, A.</creator><creator>Guffon, T.</creator><creator>Lescanne, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0528-8149</orcidid><orcidid>https://orcid.org/0000-0001-7812-1193</orcidid><orcidid>https://orcid.org/0000-0002-7979-9526</orcidid><orcidid>https://orcid.org/0000-0003-3834-2033</orcidid></search><sort><creationdate>20191101</creationdate><title>Polyphase tectono-magmatic evolution during mantle exhumation in an ultra-distal, magma-poor rift domain: example of the fossil Platta ophiolite, SE Switzerland</title><author>Epin, M.-E. ; Manatschal, G. ; Amman, M. ; Ribes, C. ; Clausse, A. ; Guffon, T. ; Lescanne, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-5708ca64b50230a95bd9a3c25f2929dde4e443be5f808b5c650f91adfd2155333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Architecture</topic><topic>Calcification</topic><topic>Deformation</topic><topic>Domains</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Evolution</topic><topic>Fault lines</topic><topic>Fossils</topic><topic>Gabbros</topic><topic>Geochemistry</topic><topic>Geological faults</topic><topic>Geology</topic><topic>Geophysics</topic><topic>Geophysics/Geodesy</topic><topic>Hydrothermal plumes</topic><topic>Hydrothermal springs</topic><topic>Hydrothermal vents</topic><topic>Lava</topic><topic>Magma</topic><topic>Mantle</topic><topic>Mapping</topic><topic>Mineral Resources</topic><topic>Morphology</topic><topic>Review Article</topic><topic>Ridges</topic><topic>Sciences of the Universe</topic><topic>Sedimentology</topic><topic>Seismic data</topic><topic>Seismological data</topic><topic>Serpentinization</topic><topic>Spreading centres</topic><topic>Structural Geology</topic><topic>Tectonics</topic><topic>Thermal evolution</topic><topic>Vents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Epin, M.-E.</creatorcontrib><creatorcontrib>Manatschal, G.</creatorcontrib><creatorcontrib>Amman, M.</creatorcontrib><creatorcontrib>Ribes, C.</creatorcontrib><creatorcontrib>Clausse, A.</creatorcontrib><creatorcontrib>Guffon, T.</creatorcontrib><creatorcontrib>Lescanne, M.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of earth sciences : Geologische Rundschau</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Epin, M.-E.</au><au>Manatschal, G.</au><au>Amman, M.</au><au>Ribes, C.</au><au>Clausse, A.</au><au>Guffon, T.</au><au>Lescanne, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyphase tectono-magmatic evolution during mantle exhumation in an ultra-distal, magma-poor rift domain: example of the fossil Platta ophiolite, SE Switzerland</atitle><jtitle>International journal of earth sciences : Geologische Rundschau</jtitle><stitle>Int J Earth Sci (Geol Rundsch)</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>108</volume><issue>8</issue><spage>2443</spage><epage>2467</epage><pages>2443-2467</pages><issn>1437-3254</issn><eissn>1437-3262</eissn><abstract>Despite the fact that many studies have investigated mantle exhumation at ultra-slow-spreading ridges and magma-poor rifted margins, there are still numerous questions concerning the 3D architecture, magmatic, fluid, and thermal evolution of these domains that remain unexplained. Indeed, it has been observed in seismic data from ultra-distal magma-poor rifted margins that top basement is heavily structured and complex; however, the associated morpho-tectonic and magmatic processes remain ill constrained. The aim of this study is to describe the 3D top basement morphology, timing, and processes controlling the formation of an exhumed mantle domain preserved over about 200 km
2
in the Platta nappe in SE Switzerland. Detailed mapping of parts of the Platta nappe enabled to document the top basement architecture of an exhumed mantle domain, and to investigate its link to later, rift/oceanic structures, magmatic additions, and hydrothermal fluid systems. Our observations show: (1) a polyphase deformation history associated with mantle exhumation along exhumation faults overprinted by later high-angle normal faults, (2) a structured top basement morphology capped by magmato-sedimentary sequences, (3) a tectono-magmatic evolution that includes gabbros, emplaced at deeper levels and subsequently exhumed and overlain by younger extrusive magmatic additions, and (4) fluid systems related to serpentinization, calcification, hydrothermal vents, rodingitization, and spilitization affecting exhumed mantle and associated magmatic rocks. The overall observations provide new information on the temporal and spatial evolution of the tectonic and magmatic processes and their link to hydrothermal and sedimentary systems controlling the formation of ultra-distal, magma-poor rifted margins, and lithospheric breakup.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00531-019-01772-0</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-0528-8149</orcidid><orcidid>https://orcid.org/0000-0001-7812-1193</orcidid><orcidid>https://orcid.org/0000-0002-7979-9526</orcidid><orcidid>https://orcid.org/0000-0003-3834-2033</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1437-3254 |
ispartof | International journal of earth sciences : Geologische Rundschau, 2019-11, Vol.108 (8), p.2443-2467 |
issn | 1437-3254 1437-3262 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03102454v1 |
source | SpringerNature Journals |
subjects | Architecture Calcification Deformation Domains Earth and Environmental Science Earth Sciences Evolution Fault lines Fossils Gabbros Geochemistry Geological faults Geology Geophysics Geophysics/Geodesy Hydrothermal plumes Hydrothermal springs Hydrothermal vents Lava Magma Mantle Mapping Mineral Resources Morphology Review Article Ridges Sciences of the Universe Sedimentology Seismic data Seismological data Serpentinization Spreading centres Structural Geology Tectonics Thermal evolution Vents |
title | Polyphase tectono-magmatic evolution during mantle exhumation in an ultra-distal, magma-poor rift domain: example of the fossil Platta ophiolite, SE Switzerland |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A12%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyphase%20tectono-magmatic%20evolution%20during%20mantle%20exhumation%20in%20an%20ultra-distal,%20magma-poor%20rift%20domain:%20example%20of%20the%20fossil%20Platta%20ophiolite,%20SE%20Switzerland&rft.jtitle=International%20journal%20of%20earth%20sciences%20:%20Geologische%20Rundschau&rft.au=Epin,%20M.-E.&rft.date=2019-11-01&rft.volume=108&rft.issue=8&rft.spage=2443&rft.epage=2467&rft.pages=2443-2467&rft.issn=1437-3254&rft.eissn=1437-3262&rft_id=info:doi/10.1007/s00531-019-01772-0&rft_dat=%3Cproquest_hal_p%3E2316455300%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316455300&rft_id=info:pmid/&rfr_iscdi=true |