Palaeoproterozoic oxygenated oceans following the Lomagundi–Jatuli Event

The approximately 2,220–2,060 million years old Lomagundi–Jatuli Event was the longest positive carbon isotope excursion in Earth history and is traditionally interpreted to reflect an increased organic carbon burial and a transient rise in atmospheric O 2 . However, it is widely held that O 2 level...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature geoscience 2020-04, Vol.13 (4), p.302-306
Hauptverfasser: Mänd, Kaarel, Lalonde, Stefan V., Robbins, Leslie J., Thoby, Marie, Paiste, Kärt, Kreitsmann, Timmu, Paiste, Päärn, Reinhard, Christopher T., Romashkin, Alexandr E., Planavsky, Noah J., Kirsimäe, Kalle, Lepland, Aivo, Konhauser, Kurt O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 306
container_issue 4
container_start_page 302
container_title Nature geoscience
container_volume 13
creator Mänd, Kaarel
Lalonde, Stefan V.
Robbins, Leslie J.
Thoby, Marie
Paiste, Kärt
Kreitsmann, Timmu
Paiste, Päärn
Reinhard, Christopher T.
Romashkin, Alexandr E.
Planavsky, Noah J.
Kirsimäe, Kalle
Lepland, Aivo
Konhauser, Kurt O.
description The approximately 2,220–2,060 million years old Lomagundi–Jatuli Event was the longest positive carbon isotope excursion in Earth history and is traditionally interpreted to reflect an increased organic carbon burial and a transient rise in atmospheric O 2 . However, it is widely held that O 2 levels collapsed for more than a billion years after this. Here we show that black shales postdating the Lomagundi–Jatuli Event from the approximately 2,000 million years old Zaonega Formation contain the highest redox-sensitive trace metal concentrations reported in sediments deposited before the Neoproterozoic (maximum concentrations of Mo = 1,009 μg g −1 , U = 238 μg g −1 and Re = 516 ng g −1 ). This unit also contains the most positive Precambrian shale U isotope values measured to date (maximum 238 U/ 235 U ratio of 0.79‰), which provides novel evidence that there was a transition to modern-like biogeochemical cycling during the Palaeoproterozoic. Although these records do not preclude a return to anoxia during the Palaeoproterozoic, they uniquely suggest that the oceans remained well-oxygenated millions of years after the termination of the Lomagundi–Jatuli Event. The oceans probably remained well-oxygenated for millions of years after the Palaeoproterozoic Lomagundi–Jatuli Event, according to high concentrations and isotope signatures of redox-sensitive metals in the 2-billion-year-old Zaonega Formation, Russia.
doi_str_mv 10.1038/s41561-020-0558-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03101037v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387994383</sourcerecordid><originalsourceid>FETCH-LOGICAL-a534t-85076d71a8e4b1451ae9c9dfc70b6f6e696e2034a2e5769f45f90fd4ebea27c13</originalsourceid><addsrcrecordid>eNp9kT1OxDAQhSMEErBwACoiUVEExol_4hKt-FUkKKC2vMkkBAUb7OzCUnEHbshJcBQWKqg8sr8343kvivYIHBHI8mNPCeMkgRQSYCxP2Fq0RQRLE5CQr6_qXNLNaNv7BwAOVLCt6OpGdxrtk7M9Ovtm2zK2r8sGje6xim2J2vi4tl1nX1rTxP09xoV91M3cVO3n-8eV7uddG58u0PQ70UatO4-73-ckujs7vZ1eJMX1-eX0pEg0y2if5AwErwTROdIZoYxolKWs6lLAjNccueSYQkZ1ikxwWVNWS6grijPUqShJNokOx773ulNPrn3UbqmsbtXFSaGGO8gIBFPEYmD3R7Z0re9bo4x1WhEIr4rIlMtAHIxEsOB5jr5XD3buTFhApcEhACap-JfKciElzfIsUGQ1zXrvsP75HgE1xKTGmFSISQ0xKRY06ajxgTUNut_Of4u-ABYEk0U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387994383</pqid></control><display><type>article</type><title>Palaeoproterozoic oxygenated oceans following the Lomagundi–Jatuli Event</title><source>NORA - Norwegian Open Research Archives</source><source>Alma/SFX Local Collection</source><creator>Mänd, Kaarel ; Lalonde, Stefan V. ; Robbins, Leslie J. ; Thoby, Marie ; Paiste, Kärt ; Kreitsmann, Timmu ; Paiste, Päärn ; Reinhard, Christopher T. ; Romashkin, Alexandr E. ; Planavsky, Noah J. ; Kirsimäe, Kalle ; Lepland, Aivo ; Konhauser, Kurt O.</creator><creatorcontrib>Mänd, Kaarel ; Lalonde, Stefan V. ; Robbins, Leslie J. ; Thoby, Marie ; Paiste, Kärt ; Kreitsmann, Timmu ; Paiste, Päärn ; Reinhard, Christopher T. ; Romashkin, Alexandr E. ; Planavsky, Noah J. ; Kirsimäe, Kalle ; Lepland, Aivo ; Konhauser, Kurt O.</creatorcontrib><description>The approximately 2,220–2,060 million years old Lomagundi–Jatuli Event was the longest positive carbon isotope excursion in Earth history and is traditionally interpreted to reflect an increased organic carbon burial and a transient rise in atmospheric O 2 . However, it is widely held that O 2 levels collapsed for more than a billion years after this. Here we show that black shales postdating the Lomagundi–Jatuli Event from the approximately 2,000 million years old Zaonega Formation contain the highest redox-sensitive trace metal concentrations reported in sediments deposited before the Neoproterozoic (maximum concentrations of Mo = 1,009 μg g −1 , U = 238 μg g −1 and Re = 516 ng g −1 ). This unit also contains the most positive Precambrian shale U isotope values measured to date (maximum 238 U/ 235 U ratio of 0.79‰), which provides novel evidence that there was a transition to modern-like biogeochemical cycling during the Palaeoproterozoic. Although these records do not preclude a return to anoxia during the Palaeoproterozoic, they uniquely suggest that the oceans remained well-oxygenated millions of years after the termination of the Lomagundi–Jatuli Event. The oceans probably remained well-oxygenated for millions of years after the Palaeoproterozoic Lomagundi–Jatuli Event, according to high concentrations and isotope signatures of redox-sensitive metals in the 2-billion-year-old Zaonega Formation, Russia.</description><identifier>ISSN: 1752-0894</identifier><identifier>ISSN: 1752-0908</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-020-0558-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/2151/209 ; 704/2151/213/4114 ; 704/2151/213/4116 ; 704/47 ; Anoxia ; Biogeochemical cycles ; Biogeochemistry ; Carbon isotopes ; Earth and Environmental Science ; Earth history ; Earth Sciences ; Earth System Sciences ; Geochemistry ; Geofag: 450 ; Geology ; Geophysics/Geodesy ; Geosciences: 450 ; Isotopes ; Matematikk og Naturvitenskap: 400 ; Mathematics and natural science: 400 ; Metal concentrations ; Metals ; Mineralogi, petrologi, geokjemi: 462 ; Mineralogy, petrology, geochemistry: 462 ; Oceans ; Organic carbon ; Oxidoreductions ; Oxygenation ; Precambrian ; Sciences of the Universe ; Sedimentary rocks ; Sediments ; Shale ; Stratigrafi og paleontologi: 461 ; Stratigraphy and paleontology: 461 ; Trace metals ; VDP</subject><ispartof>Nature geoscience, 2020-04, Vol.13 (4), p.302-306</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a534t-85076d71a8e4b1451ae9c9dfc70b6f6e696e2034a2e5769f45f90fd4ebea27c13</citedby><cites>FETCH-LOGICAL-a534t-85076d71a8e4b1451ae9c9dfc70b6f6e696e2034a2e5769f45f90fd4ebea27c13</cites><orcidid>0000-0003-1575-3710 ; 0000-0003-1318-2280 ; 0000-0002-9701-7874 ; 0000-0001-7722-7068 ; 0000-0002-1221-3623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,26567,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03101037$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mänd, Kaarel</creatorcontrib><creatorcontrib>Lalonde, Stefan V.</creatorcontrib><creatorcontrib>Robbins, Leslie J.</creatorcontrib><creatorcontrib>Thoby, Marie</creatorcontrib><creatorcontrib>Paiste, Kärt</creatorcontrib><creatorcontrib>Kreitsmann, Timmu</creatorcontrib><creatorcontrib>Paiste, Päärn</creatorcontrib><creatorcontrib>Reinhard, Christopher T.</creatorcontrib><creatorcontrib>Romashkin, Alexandr E.</creatorcontrib><creatorcontrib>Planavsky, Noah J.</creatorcontrib><creatorcontrib>Kirsimäe, Kalle</creatorcontrib><creatorcontrib>Lepland, Aivo</creatorcontrib><creatorcontrib>Konhauser, Kurt O.</creatorcontrib><title>Palaeoproterozoic oxygenated oceans following the Lomagundi–Jatuli Event</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>The approximately 2,220–2,060 million years old Lomagundi–Jatuli Event was the longest positive carbon isotope excursion in Earth history and is traditionally interpreted to reflect an increased organic carbon burial and a transient rise in atmospheric O 2 . However, it is widely held that O 2 levels collapsed for more than a billion years after this. Here we show that black shales postdating the Lomagundi–Jatuli Event from the approximately 2,000 million years old Zaonega Formation contain the highest redox-sensitive trace metal concentrations reported in sediments deposited before the Neoproterozoic (maximum concentrations of Mo = 1,009 μg g −1 , U = 238 μg g −1 and Re = 516 ng g −1 ). This unit also contains the most positive Precambrian shale U isotope values measured to date (maximum 238 U/ 235 U ratio of 0.79‰), which provides novel evidence that there was a transition to modern-like biogeochemical cycling during the Palaeoproterozoic. Although these records do not preclude a return to anoxia during the Palaeoproterozoic, they uniquely suggest that the oceans remained well-oxygenated millions of years after the termination of the Lomagundi–Jatuli Event. The oceans probably remained well-oxygenated for millions of years after the Palaeoproterozoic Lomagundi–Jatuli Event, according to high concentrations and isotope signatures of redox-sensitive metals in the 2-billion-year-old Zaonega Formation, Russia.</description><subject>704/2151/209</subject><subject>704/2151/213/4114</subject><subject>704/2151/213/4116</subject><subject>704/47</subject><subject>Anoxia</subject><subject>Biogeochemical cycles</subject><subject>Biogeochemistry</subject><subject>Carbon isotopes</subject><subject>Earth and Environmental Science</subject><subject>Earth history</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Geochemistry</subject><subject>Geofag: 450</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Geosciences: 450</subject><subject>Isotopes</subject><subject>Matematikk og Naturvitenskap: 400</subject><subject>Mathematics and natural science: 400</subject><subject>Metal concentrations</subject><subject>Metals</subject><subject>Mineralogi, petrologi, geokjemi: 462</subject><subject>Mineralogy, petrology, geochemistry: 462</subject><subject>Oceans</subject><subject>Organic carbon</subject><subject>Oxidoreductions</subject><subject>Oxygenation</subject><subject>Precambrian</subject><subject>Sciences of the Universe</subject><subject>Sedimentary rocks</subject><subject>Sediments</subject><subject>Shale</subject><subject>Stratigrafi og paleontologi: 461</subject><subject>Stratigraphy and paleontology: 461</subject><subject>Trace metals</subject><subject>VDP</subject><issn>1752-0894</issn><issn>1752-0908</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>3HK</sourceid><recordid>eNp9kT1OxDAQhSMEErBwACoiUVEExol_4hKt-FUkKKC2vMkkBAUb7OzCUnEHbshJcBQWKqg8sr8343kvivYIHBHI8mNPCeMkgRQSYCxP2Fq0RQRLE5CQr6_qXNLNaNv7BwAOVLCt6OpGdxrtk7M9Ovtm2zK2r8sGje6xim2J2vi4tl1nX1rTxP09xoV91M3cVO3n-8eV7uddG58u0PQ70UatO4-73-ckujs7vZ1eJMX1-eX0pEg0y2if5AwErwTROdIZoYxolKWs6lLAjNccueSYQkZ1ikxwWVNWS6grijPUqShJNokOx773ulNPrn3UbqmsbtXFSaGGO8gIBFPEYmD3R7Z0re9bo4x1WhEIr4rIlMtAHIxEsOB5jr5XD3buTFhApcEhACap-JfKciElzfIsUGQ1zXrvsP75HgE1xKTGmFSISQ0xKRY06ajxgTUNut_Of4u-ABYEk0U</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Mänd, Kaarel</creator><creator>Lalonde, Stefan V.</creator><creator>Robbins, Leslie J.</creator><creator>Thoby, Marie</creator><creator>Paiste, Kärt</creator><creator>Kreitsmann, Timmu</creator><creator>Paiste, Päärn</creator><creator>Reinhard, Christopher T.</creator><creator>Romashkin, Alexandr E.</creator><creator>Planavsky, Noah J.</creator><creator>Kirsimäe, Kalle</creator><creator>Lepland, Aivo</creator><creator>Konhauser, Kurt O.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>3HK</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1575-3710</orcidid><orcidid>https://orcid.org/0000-0003-1318-2280</orcidid><orcidid>https://orcid.org/0000-0002-9701-7874</orcidid><orcidid>https://orcid.org/0000-0001-7722-7068</orcidid><orcidid>https://orcid.org/0000-0002-1221-3623</orcidid></search><sort><creationdate>20200401</creationdate><title>Palaeoproterozoic oxygenated oceans following the Lomagundi–Jatuli Event</title><author>Mänd, Kaarel ; Lalonde, Stefan V. ; Robbins, Leslie J. ; Thoby, Marie ; Paiste, Kärt ; Kreitsmann, Timmu ; Paiste, Päärn ; Reinhard, Christopher T. ; Romashkin, Alexandr E. ; Planavsky, Noah J. ; Kirsimäe, Kalle ; Lepland, Aivo ; Konhauser, Kurt O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a534t-85076d71a8e4b1451ae9c9dfc70b6f6e696e2034a2e5769f45f90fd4ebea27c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>704/2151/209</topic><topic>704/2151/213/4114</topic><topic>704/2151/213/4116</topic><topic>704/47</topic><topic>Anoxia</topic><topic>Biogeochemical cycles</topic><topic>Biogeochemistry</topic><topic>Carbon isotopes</topic><topic>Earth and Environmental Science</topic><topic>Earth history</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Geochemistry</topic><topic>Geofag: 450</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Geosciences: 450</topic><topic>Isotopes</topic><topic>Matematikk og Naturvitenskap: 400</topic><topic>Mathematics and natural science: 400</topic><topic>Metal concentrations</topic><topic>Metals</topic><topic>Mineralogi, petrologi, geokjemi: 462</topic><topic>Mineralogy, petrology, geochemistry: 462</topic><topic>Oceans</topic><topic>Organic carbon</topic><topic>Oxidoreductions</topic><topic>Oxygenation</topic><topic>Precambrian</topic><topic>Sciences of the Universe</topic><topic>Sedimentary rocks</topic><topic>Sediments</topic><topic>Shale</topic><topic>Stratigrafi og paleontologi: 461</topic><topic>Stratigraphy and paleontology: 461</topic><topic>Trace metals</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mänd, Kaarel</creatorcontrib><creatorcontrib>Lalonde, Stefan V.</creatorcontrib><creatorcontrib>Robbins, Leslie J.</creatorcontrib><creatorcontrib>Thoby, Marie</creatorcontrib><creatorcontrib>Paiste, Kärt</creatorcontrib><creatorcontrib>Kreitsmann, Timmu</creatorcontrib><creatorcontrib>Paiste, Päärn</creatorcontrib><creatorcontrib>Reinhard, Christopher T.</creatorcontrib><creatorcontrib>Romashkin, Alexandr E.</creatorcontrib><creatorcontrib>Planavsky, Noah J.</creatorcontrib><creatorcontrib>Kirsimäe, Kalle</creatorcontrib><creatorcontrib>Lepland, Aivo</creatorcontrib><creatorcontrib>Konhauser, Kurt O.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mänd, Kaarel</au><au>Lalonde, Stefan V.</au><au>Robbins, Leslie J.</au><au>Thoby, Marie</au><au>Paiste, Kärt</au><au>Kreitsmann, Timmu</au><au>Paiste, Päärn</au><au>Reinhard, Christopher T.</au><au>Romashkin, Alexandr E.</au><au>Planavsky, Noah J.</au><au>Kirsimäe, Kalle</au><au>Lepland, Aivo</au><au>Konhauser, Kurt O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Palaeoproterozoic oxygenated oceans following the Lomagundi–Jatuli Event</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>13</volume><issue>4</issue><spage>302</spage><epage>306</epage><pages>302-306</pages><issn>1752-0894</issn><issn>1752-0908</issn><eissn>1752-0908</eissn><abstract>The approximately 2,220–2,060 million years old Lomagundi–Jatuli Event was the longest positive carbon isotope excursion in Earth history and is traditionally interpreted to reflect an increased organic carbon burial and a transient rise in atmospheric O 2 . However, it is widely held that O 2 levels collapsed for more than a billion years after this. Here we show that black shales postdating the Lomagundi–Jatuli Event from the approximately 2,000 million years old Zaonega Formation contain the highest redox-sensitive trace metal concentrations reported in sediments deposited before the Neoproterozoic (maximum concentrations of Mo = 1,009 μg g −1 , U = 238 μg g −1 and Re = 516 ng g −1 ). This unit also contains the most positive Precambrian shale U isotope values measured to date (maximum 238 U/ 235 U ratio of 0.79‰), which provides novel evidence that there was a transition to modern-like biogeochemical cycling during the Palaeoproterozoic. Although these records do not preclude a return to anoxia during the Palaeoproterozoic, they uniquely suggest that the oceans remained well-oxygenated millions of years after the termination of the Lomagundi–Jatuli Event. The oceans probably remained well-oxygenated for millions of years after the Palaeoproterozoic Lomagundi–Jatuli Event, according to high concentrations and isotope signatures of redox-sensitive metals in the 2-billion-year-old Zaonega Formation, Russia.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-020-0558-5</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1575-3710</orcidid><orcidid>https://orcid.org/0000-0003-1318-2280</orcidid><orcidid>https://orcid.org/0000-0002-9701-7874</orcidid><orcidid>https://orcid.org/0000-0001-7722-7068</orcidid><orcidid>https://orcid.org/0000-0002-1221-3623</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1752-0894
ispartof Nature geoscience, 2020-04, Vol.13 (4), p.302-306
issn 1752-0894
1752-0908
1752-0908
language eng
recordid cdi_hal_primary_oai_HAL_hal_03101037v1
source NORA - Norwegian Open Research Archives; Alma/SFX Local Collection
subjects 704/2151/209
704/2151/213/4114
704/2151/213/4116
704/47
Anoxia
Biogeochemical cycles
Biogeochemistry
Carbon isotopes
Earth and Environmental Science
Earth history
Earth Sciences
Earth System Sciences
Geochemistry
Geofag: 450
Geology
Geophysics/Geodesy
Geosciences: 450
Isotopes
Matematikk og Naturvitenskap: 400
Mathematics and natural science: 400
Metal concentrations
Metals
Mineralogi, petrologi, geokjemi: 462
Mineralogy, petrology, geochemistry: 462
Oceans
Organic carbon
Oxidoreductions
Oxygenation
Precambrian
Sciences of the Universe
Sedimentary rocks
Sediments
Shale
Stratigrafi og paleontologi: 461
Stratigraphy and paleontology: 461
Trace metals
VDP
title Palaeoproterozoic oxygenated oceans following the Lomagundi–Jatuli Event
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Palaeoproterozoic%20oxygenated%20oceans%20following%20the%20Lomagundi%E2%80%93Jatuli%20Event&rft.jtitle=Nature%20geoscience&rft.au=M%C3%A4nd,%20Kaarel&rft.date=2020-04-01&rft.volume=13&rft.issue=4&rft.spage=302&rft.epage=306&rft.pages=302-306&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-020-0558-5&rft_dat=%3Cproquest_hal_p%3E2387994383%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387994383&rft_id=info:pmid/&rfr_iscdi=true