Femtosecond laser irradiation of titanium oxide thin films: accumulation effect under IR beam

This paper discusses the mechanisms of laser-induced periodic surface structures (LIPSS) formation using a high repetition rate femtosecond laser beam irradiation of magnetron-sputtered titanium oxide thin films (TiO 1.8 ) grown onto SiO 2 /Si substrates. An Yb:YKW 500 fs linearly polarized laser em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2020-05, Vol.126 (5), Article 390
Hauptverfasser: Talbi, A., Semmar, N., Tabbal, M., Connor, G. O.’, Coddet, P., Thomann, A.-L., Stolz, A., Leborgne, C., Millon, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 126
creator Talbi, A.
Semmar, N.
Tabbal, M.
Connor, G. O.’
Coddet, P.
Thomann, A.-L.
Stolz, A.
Leborgne, C.
Millon, E.
description This paper discusses the mechanisms of laser-induced periodic surface structures (LIPSS) formation using a high repetition rate femtosecond laser beam irradiation of magnetron-sputtered titanium oxide thin films (TiO 1.8 ) grown onto SiO 2 /Si substrates. An Yb:YKW 500 fs linearly polarized laser emitting at a wavelength, λ , of 1030 nm, was used to irradiate the films (300 nm thickness) at a repetition rate of 100 kHz under both static and dynamic (scanning) conditions. Under static beam conditions, an incubation behavior related to materials in thin film form was established with a damage threshold of 72 mJ/cm 2 . Close to this fluence value and increasing the number of laser shots from 1 to 1000, micro-cracking occurred and propagated inside the beam waist diameter zone estimated close to 60 µm. In addition, using a higher fluence value of 280 mJ/cm 2 , i.e., well above the damage threshold, a melting occurred in an intermediate zone within the irradiated area, with a surprising ‘cure effect’ that contributes to the micro-cracks stabilization. Simultaneously, at the center of the Gaussian laser beam spot, the entire film ablation was observed. Furthermore, irradiation under dynamic mode with a scanning speed of 4 mm/s and a repetition rate of 100 kHz were achieved for the large-scale processing of the TiO 1.8 films up to surface area of 25 × 25 mm 2 . For these irradiation conditions case that correspond to a fluence of 110 mJ/cm 2 and a cumulative number of shots of 3000, 2D-LIPSS nano-cracks (200 nm length and λ /8 to λ /9 period) are obtained over the whole irradiated surface, a phenomenon that is mainly attributed to a thermo-mechanical ablation mechanism.
doi_str_mv 10.1007/s00339-020-03568-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03099919v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398224704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-13f1118ffd8bc7fdcfac0124ca6a8af98abbad629b8a1df3e7a43968ebae39ee3</originalsourceid><addsrcrecordid>eNp9kM1KxTAQRoMoeL36Aq4CrlxUJ0lvm7gT8Q8uCKJLCdM00UjbaNKKvr3Riu7MZiCc7zDzEbLP4IgB1McJQAhVAIcCxKqSxWqDLFgpeAGVgE2yAFXWhRSq2iY7KT1DfiXnC_JwYfsxJGvC0NIOk43Ux4itx9GHgQZHRz_i4KeehnffWjo--YE63_XphKIxUz91M2qds2ak09Bmx_UtbSz2u2TLYZfs3s9ckvuL87uzq2J9c3l9drouTMnUWDDhGGPSuVY2pnatcWiA8dJghRKdktg02FZcNRJZ64StscynSNugFcpasSSHs_cJO_0SfY_xQwf0-up0rb_-QIBSiqk3ltmDmX2J4XWyadTPYYpDXk9zoSTnZQ1lpvhMmRhSitb9ahnor8r1XLnOlevvyvUqh8QcShkeHm38U_-T-gR6eIU4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398224704</pqid></control><display><type>article</type><title>Femtosecond laser irradiation of titanium oxide thin films: accumulation effect under IR beam</title><source>SpringerNature Journals</source><creator>Talbi, A. ; Semmar, N. ; Tabbal, M. ; Connor, G. O.’ ; Coddet, P. ; Thomann, A.-L. ; Stolz, A. ; Leborgne, C. ; Millon, E.</creator><creatorcontrib>Talbi, A. ; Semmar, N. ; Tabbal, M. ; Connor, G. O.’ ; Coddet, P. ; Thomann, A.-L. ; Stolz, A. ; Leborgne, C. ; Millon, E.</creatorcontrib><description>This paper discusses the mechanisms of laser-induced periodic surface structures (LIPSS) formation using a high repetition rate femtosecond laser beam irradiation of magnetron-sputtered titanium oxide thin films (TiO 1.8 ) grown onto SiO 2 /Si substrates. An Yb:YKW 500 fs linearly polarized laser emitting at a wavelength, λ , of 1030 nm, was used to irradiate the films (300 nm thickness) at a repetition rate of 100 kHz under both static and dynamic (scanning) conditions. Under static beam conditions, an incubation behavior related to materials in thin film form was established with a damage threshold of 72 mJ/cm 2 . Close to this fluence value and increasing the number of laser shots from 1 to 1000, micro-cracking occurred and propagated inside the beam waist diameter zone estimated close to 60 µm. In addition, using a higher fluence value of 280 mJ/cm 2 , i.e., well above the damage threshold, a melting occurred in an intermediate zone within the irradiated area, with a surprising ‘cure effect’ that contributes to the micro-cracks stabilization. Simultaneously, at the center of the Gaussian laser beam spot, the entire film ablation was observed. Furthermore, irradiation under dynamic mode with a scanning speed of 4 mm/s and a repetition rate of 100 kHz were achieved for the large-scale processing of the TiO 1.8 films up to surface area of 25 × 25 mm 2 . For these irradiation conditions case that correspond to a fluence of 110 mJ/cm 2 and a cumulative number of shots of 3000, 2D-LIPSS nano-cracks (200 nm length and λ /8 to λ /9 period) are obtained over the whole irradiated surface, a phenomenon that is mainly attributed to a thermo-mechanical ablation mechanism.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-020-03568-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ablation ; Applied physics ; Area ; Characterization and Evaluation of Materials ; Chemical and Process Engineering ; Condensed Matter Physics ; Crack initiation ; Crack propagation ; Cracking (fracturing) ; Diameters ; Engineering Sciences ; Fluence ; Fracture mechanics ; Gaussian beams (optics) ; Laser beams ; Lasers ; Linear polarization ; Machines ; Manufacturing ; Materials science ; Microcracks ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Radiation damage ; Repetition ; Scanning ; Silicon dioxide ; Silicon substrates ; Surfaces and Interfaces ; Thickness ; Thin Films ; Titanium oxides ; Yield point</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2020-05, Vol.126 (5), Article 390</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-13f1118ffd8bc7fdcfac0124ca6a8af98abbad629b8a1df3e7a43968ebae39ee3</citedby><cites>FETCH-LOGICAL-c419t-13f1118ffd8bc7fdcfac0124ca6a8af98abbad629b8a1df3e7a43968ebae39ee3</cites><orcidid>0000-0001-5952-5918 ; 0000-0001-6087-8737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-020-03568-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-020-03568-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://cnrs.hal.science/hal-03099919$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Talbi, A.</creatorcontrib><creatorcontrib>Semmar, N.</creatorcontrib><creatorcontrib>Tabbal, M.</creatorcontrib><creatorcontrib>Connor, G. O.’</creatorcontrib><creatorcontrib>Coddet, P.</creatorcontrib><creatorcontrib>Thomann, A.-L.</creatorcontrib><creatorcontrib>Stolz, A.</creatorcontrib><creatorcontrib>Leborgne, C.</creatorcontrib><creatorcontrib>Millon, E.</creatorcontrib><title>Femtosecond laser irradiation of titanium oxide thin films: accumulation effect under IR beam</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>This paper discusses the mechanisms of laser-induced periodic surface structures (LIPSS) formation using a high repetition rate femtosecond laser beam irradiation of magnetron-sputtered titanium oxide thin films (TiO 1.8 ) grown onto SiO 2 /Si substrates. An Yb:YKW 500 fs linearly polarized laser emitting at a wavelength, λ , of 1030 nm, was used to irradiate the films (300 nm thickness) at a repetition rate of 100 kHz under both static and dynamic (scanning) conditions. Under static beam conditions, an incubation behavior related to materials in thin film form was established with a damage threshold of 72 mJ/cm 2 . Close to this fluence value and increasing the number of laser shots from 1 to 1000, micro-cracking occurred and propagated inside the beam waist diameter zone estimated close to 60 µm. In addition, using a higher fluence value of 280 mJ/cm 2 , i.e., well above the damage threshold, a melting occurred in an intermediate zone within the irradiated area, with a surprising ‘cure effect’ that contributes to the micro-cracks stabilization. Simultaneously, at the center of the Gaussian laser beam spot, the entire film ablation was observed. Furthermore, irradiation under dynamic mode with a scanning speed of 4 mm/s and a repetition rate of 100 kHz were achieved for the large-scale processing of the TiO 1.8 films up to surface area of 25 × 25 mm 2 . For these irradiation conditions case that correspond to a fluence of 110 mJ/cm 2 and a cumulative number of shots of 3000, 2D-LIPSS nano-cracks (200 nm length and λ /8 to λ /9 period) are obtained over the whole irradiated surface, a phenomenon that is mainly attributed to a thermo-mechanical ablation mechanism.</description><subject>Ablation</subject><subject>Applied physics</subject><subject>Area</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical and Process Engineering</subject><subject>Condensed Matter Physics</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Cracking (fracturing)</subject><subject>Diameters</subject><subject>Engineering Sciences</subject><subject>Fluence</subject><subject>Fracture mechanics</subject><subject>Gaussian beams (optics)</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Linear polarization</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Microcracks</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Radiation damage</subject><subject>Repetition</subject><subject>Scanning</subject><subject>Silicon dioxide</subject><subject>Silicon substrates</subject><subject>Surfaces and Interfaces</subject><subject>Thickness</subject><subject>Thin Films</subject><subject>Titanium oxides</subject><subject>Yield point</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxTAQRoMoeL36Aq4CrlxUJ0lvm7gT8Q8uCKJLCdM00UjbaNKKvr3Riu7MZiCc7zDzEbLP4IgB1McJQAhVAIcCxKqSxWqDLFgpeAGVgE2yAFXWhRSq2iY7KT1DfiXnC_JwYfsxJGvC0NIOk43Ux4itx9GHgQZHRz_i4KeehnffWjo--YE63_XphKIxUz91M2qds2ak09Bmx_UtbSz2u2TLYZfs3s9ckvuL87uzq2J9c3l9drouTMnUWDDhGGPSuVY2pnatcWiA8dJghRKdktg02FZcNRJZ64StscynSNugFcpasSSHs_cJO_0SfY_xQwf0-up0rb_-QIBSiqk3ltmDmX2J4XWyadTPYYpDXk9zoSTnZQ1lpvhMmRhSitb9ahnor8r1XLnOlevvyvUqh8QcShkeHm38U_-T-gR6eIU4</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Talbi, A.</creator><creator>Semmar, N.</creator><creator>Tabbal, M.</creator><creator>Connor, G. O.’</creator><creator>Coddet, P.</creator><creator>Thomann, A.-L.</creator><creator>Stolz, A.</creator><creator>Leborgne, C.</creator><creator>Millon, E.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5952-5918</orcidid><orcidid>https://orcid.org/0000-0001-6087-8737</orcidid></search><sort><creationdate>20200501</creationdate><title>Femtosecond laser irradiation of titanium oxide thin films: accumulation effect under IR beam</title><author>Talbi, A. ; Semmar, N. ; Tabbal, M. ; Connor, G. O.’ ; Coddet, P. ; Thomann, A.-L. ; Stolz, A. ; Leborgne, C. ; Millon, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-13f1118ffd8bc7fdcfac0124ca6a8af98abbad629b8a1df3e7a43968ebae39ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>Applied physics</topic><topic>Area</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical and Process Engineering</topic><topic>Condensed Matter Physics</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Cracking (fracturing)</topic><topic>Diameters</topic><topic>Engineering Sciences</topic><topic>Fluence</topic><topic>Fracture mechanics</topic><topic>Gaussian beams (optics)</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Linear polarization</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Microcracks</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Radiation damage</topic><topic>Repetition</topic><topic>Scanning</topic><topic>Silicon dioxide</topic><topic>Silicon substrates</topic><topic>Surfaces and Interfaces</topic><topic>Thickness</topic><topic>Thin Films</topic><topic>Titanium oxides</topic><topic>Yield point</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talbi, A.</creatorcontrib><creatorcontrib>Semmar, N.</creatorcontrib><creatorcontrib>Tabbal, M.</creatorcontrib><creatorcontrib>Connor, G. O.’</creatorcontrib><creatorcontrib>Coddet, P.</creatorcontrib><creatorcontrib>Thomann, A.-L.</creatorcontrib><creatorcontrib>Stolz, A.</creatorcontrib><creatorcontrib>Leborgne, C.</creatorcontrib><creatorcontrib>Millon, E.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talbi, A.</au><au>Semmar, N.</au><au>Tabbal, M.</au><au>Connor, G. O.’</au><au>Coddet, P.</au><au>Thomann, A.-L.</au><au>Stolz, A.</au><au>Leborgne, C.</au><au>Millon, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Femtosecond laser irradiation of titanium oxide thin films: accumulation effect under IR beam</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>126</volume><issue>5</issue><artnum>390</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>This paper discusses the mechanisms of laser-induced periodic surface structures (LIPSS) formation using a high repetition rate femtosecond laser beam irradiation of magnetron-sputtered titanium oxide thin films (TiO 1.8 ) grown onto SiO 2 /Si substrates. An Yb:YKW 500 fs linearly polarized laser emitting at a wavelength, λ , of 1030 nm, was used to irradiate the films (300 nm thickness) at a repetition rate of 100 kHz under both static and dynamic (scanning) conditions. Under static beam conditions, an incubation behavior related to materials in thin film form was established with a damage threshold of 72 mJ/cm 2 . Close to this fluence value and increasing the number of laser shots from 1 to 1000, micro-cracking occurred and propagated inside the beam waist diameter zone estimated close to 60 µm. In addition, using a higher fluence value of 280 mJ/cm 2 , i.e., well above the damage threshold, a melting occurred in an intermediate zone within the irradiated area, with a surprising ‘cure effect’ that contributes to the micro-cracks stabilization. Simultaneously, at the center of the Gaussian laser beam spot, the entire film ablation was observed. Furthermore, irradiation under dynamic mode with a scanning speed of 4 mm/s and a repetition rate of 100 kHz were achieved for the large-scale processing of the TiO 1.8 films up to surface area of 25 × 25 mm 2 . For these irradiation conditions case that correspond to a fluence of 110 mJ/cm 2 and a cumulative number of shots of 3000, 2D-LIPSS nano-cracks (200 nm length and λ /8 to λ /9 period) are obtained over the whole irradiated surface, a phenomenon that is mainly attributed to a thermo-mechanical ablation mechanism.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-020-03568-5</doi><orcidid>https://orcid.org/0000-0001-5952-5918</orcidid><orcidid>https://orcid.org/0000-0001-6087-8737</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2020-05, Vol.126 (5), Article 390
issn 0947-8396
1432-0630
language eng
recordid cdi_hal_primary_oai_HAL_hal_03099919v1
source SpringerNature Journals
subjects Ablation
Applied physics
Area
Characterization and Evaluation of Materials
Chemical and Process Engineering
Condensed Matter Physics
Crack initiation
Crack propagation
Cracking (fracturing)
Diameters
Engineering Sciences
Fluence
Fracture mechanics
Gaussian beams (optics)
Laser beams
Lasers
Linear polarization
Machines
Manufacturing
Materials science
Microcracks
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Radiation damage
Repetition
Scanning
Silicon dioxide
Silicon substrates
Surfaces and Interfaces
Thickness
Thin Films
Titanium oxides
Yield point
title Femtosecond laser irradiation of titanium oxide thin films: accumulation effect under IR beam
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A12%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Femtosecond%20laser%20irradiation%20of%20titanium%20oxide%20thin%20films:%20accumulation%20effect%20under%20IR%20beam&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Talbi,%20A.&rft.date=2020-05-01&rft.volume=126&rft.issue=5&rft.artnum=390&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-020-03568-5&rft_dat=%3Cproquest_hal_p%3E2398224704%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398224704&rft_id=info:pmid/&rfr_iscdi=true