On the stationary distribution of reflected Brownian motion in a wedge: differential properties

Electron. J. Probab. 30: 1-68 (2025) We consider the classical problem of determining the stationary distribution of the semimartingale reflected Brownian motion (SRBM) in a two-dimensional wedge. Under standard assumptions on the parameters of the model (opening of the wedge, angles of the reflecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of probability 2024
Hauptverfasser: Bousquet-Mélou, M, Price, A. Elvey, Franceschi, S, Hardouin, C, Raschel, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Electronic journal of probability
container_volume
creator Bousquet-Mélou, M
Price, A. Elvey
Franceschi, S
Hardouin, C
Raschel, K
description Electron. J. Probab. 30: 1-68 (2025) We consider the classical problem of determining the stationary distribution of the semimartingale reflected Brownian motion (SRBM) in a two-dimensional wedge. Under standard assumptions on the parameters of the model (opening of the wedge, angles of the reflections, drift), we study the algebraic and differential nature of the Laplace transform of this stationary distribution. We derive necessary and sufficient conditions for this Laplace transform to be rational, algebraic, differentially finite or more generally differentially algebraic. These conditions are explicit linear dependencies between the angles of the model. A complicated integral expression for this Laplace transform has recently been obtained by two authors of this paper. In the differentially algebraic case, we provide a simple, explicit integral-free expression in terms of a hypergeometric function. It specializes to earlier expressions in several classical cases: the skew-symmetric case, the orthogonal reflections case and the sum-of-exponential densities case (corresponding to the so-called Dieker-Moriarty conditions on the parameters). This paper thus closes, in a sense, the quest of all ``simple'' cases. To prove these results, we start from a functional equation that the Laplace transform satisfies, to which we apply tools from diverse horizons. To establish differential algebraicity, a key ingredient is Tutte's invariant approach, which originates in enumerative combinatorics. It allows us to express the Laplace transform (or its square) as a rational function of a certain canonical invariant, a hypergeometric function in our context. To establish differential transcendence, we turn the functional equation into a difference equation and apply Galoisian results on the nature of the solutions to such equations.
doi_str_mv 10.48550/arxiv.2101.01562
format Article
fullrecord <record><control><sourceid>hal_arxiv</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03098489v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03098489v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1012-cf12d69e019423c8ef83f36e04f77b4c5a12f79fb2b04afca4400a06036feef23</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAazwlkXK-BHXYVcqoEiVuoF1NEnG1ChNKse08PckLUKs5nVmNPcydi1gom2awh2GL7-bSAFiAiI18oSNBFiVGG2z03_5Obvoug8ACdrYEctXDY9r4l3E6NsGwzevfBeDLz6HmreOB3I1lZEq_hDafeOx4Zv2MPQNR76n6p3u-y3nKFATPdZ8G9otheipu2RnDuuOrn7jmL09Pb7OF8ly9fwyny0T7D-WSemErExGIDItVWnJWeWUIdBuOi10maKQbpq5Qhag0ZWoNQCCAWUckZNqzG6Pd9dY59vgN72SvEWfL2bLfOiBgsz2-ncDe3NkD5790YN3-cE79QPmzWRs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the stationary distribution of reflected Brownian motion in a wedge: differential properties</title><source>Project Euclid Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>arXiv.org</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bousquet-Mélou, M ; Price, A. Elvey ; Franceschi, S ; Hardouin, C ; Raschel, K</creator><creatorcontrib>Bousquet-Mélou, M ; Price, A. Elvey ; Franceschi, S ; Hardouin, C ; Raschel, K</creatorcontrib><description>Electron. J. Probab. 30: 1-68 (2025) We consider the classical problem of determining the stationary distribution of the semimartingale reflected Brownian motion (SRBM) in a two-dimensional wedge. Under standard assumptions on the parameters of the model (opening of the wedge, angles of the reflections, drift), we study the algebraic and differential nature of the Laplace transform of this stationary distribution. We derive necessary and sufficient conditions for this Laplace transform to be rational, algebraic, differentially finite or more generally differentially algebraic. These conditions are explicit linear dependencies between the angles of the model. A complicated integral expression for this Laplace transform has recently been obtained by two authors of this paper. In the differentially algebraic case, we provide a simple, explicit integral-free expression in terms of a hypergeometric function. It specializes to earlier expressions in several classical cases: the skew-symmetric case, the orthogonal reflections case and the sum-of-exponential densities case (corresponding to the so-called Dieker-Moriarty conditions on the parameters). This paper thus closes, in a sense, the quest of all ``simple'' cases. To prove these results, we start from a functional equation that the Laplace transform satisfies, to which we apply tools from diverse horizons. To establish differential algebraicity, a key ingredient is Tutte's invariant approach, which originates in enumerative combinatorics. It allows us to express the Laplace transform (or its square) as a rational function of a certain canonical invariant, a hypergeometric function in our context. To establish differential transcendence, we turn the functional equation into a difference equation and apply Galoisian results on the nature of the solutions to such equations.</description><identifier>ISSN: 1083-6489</identifier><identifier>EISSN: 1083-6489</identifier><identifier>DOI: 10.48550/arxiv.2101.01562</identifier><language>eng</language><publisher>Institute of Mathematical Statistics (IMS)</publisher><subject>Combinatorics ; Mathematics ; Mathematics - Probability ; Probability</subject><ispartof>Electronic journal of probability, 2024</ispartof><rights>http://arxiv.org/licenses/nonexclusive-distrib/1.0</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2863-8300 ; 0000-0002-7132-7655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>228,230,314,776,780,860,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://doi.org/10.48550/arXiv.2101.01562$$DView paper in arXiv$$Hfree_for_read</backlink><backlink>$$Uhttps://doi.org/10.1214/24-EJP1257$$DView published paper (Access to full text may be restricted)$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03098489$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bousquet-Mélou, M</creatorcontrib><creatorcontrib>Price, A. Elvey</creatorcontrib><creatorcontrib>Franceschi, S</creatorcontrib><creatorcontrib>Hardouin, C</creatorcontrib><creatorcontrib>Raschel, K</creatorcontrib><title>On the stationary distribution of reflected Brownian motion in a wedge: differential properties</title><title>Electronic journal of probability</title><description>Electron. J. Probab. 30: 1-68 (2025) We consider the classical problem of determining the stationary distribution of the semimartingale reflected Brownian motion (SRBM) in a two-dimensional wedge. Under standard assumptions on the parameters of the model (opening of the wedge, angles of the reflections, drift), we study the algebraic and differential nature of the Laplace transform of this stationary distribution. We derive necessary and sufficient conditions for this Laplace transform to be rational, algebraic, differentially finite or more generally differentially algebraic. These conditions are explicit linear dependencies between the angles of the model. A complicated integral expression for this Laplace transform has recently been obtained by two authors of this paper. In the differentially algebraic case, we provide a simple, explicit integral-free expression in terms of a hypergeometric function. It specializes to earlier expressions in several classical cases: the skew-symmetric case, the orthogonal reflections case and the sum-of-exponential densities case (corresponding to the so-called Dieker-Moriarty conditions on the parameters). This paper thus closes, in a sense, the quest of all ``simple'' cases. To prove these results, we start from a functional equation that the Laplace transform satisfies, to which we apply tools from diverse horizons. To establish differential algebraicity, a key ingredient is Tutte's invariant approach, which originates in enumerative combinatorics. It allows us to express the Laplace transform (or its square) as a rational function of a certain canonical invariant, a hypergeometric function in our context. To establish differential transcendence, we turn the functional equation into a difference equation and apply Galoisian results on the nature of the solutions to such equations.</description><subject>Combinatorics</subject><subject>Mathematics</subject><subject>Mathematics - Probability</subject><subject>Probability</subject><issn>1083-6489</issn><issn>1083-6489</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>GOX</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAazwlkXK-BHXYVcqoEiVuoF1NEnG1ChNKse08PckLUKs5nVmNPcydi1gom2awh2GL7-bSAFiAiI18oSNBFiVGG2z03_5Obvoug8ACdrYEctXDY9r4l3E6NsGwzevfBeDLz6HmreOB3I1lZEq_hDafeOx4Zv2MPQNR76n6p3u-y3nKFATPdZ8G9otheipu2RnDuuOrn7jmL09Pb7OF8ly9fwyny0T7D-WSemErExGIDItVWnJWeWUIdBuOi10maKQbpq5Qhag0ZWoNQCCAWUckZNqzG6Pd9dY59vgN72SvEWfL2bLfOiBgsz2-ncDe3NkD5790YN3-cE79QPmzWRs</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bousquet-Mélou, M</creator><creator>Price, A. Elvey</creator><creator>Franceschi, S</creator><creator>Hardouin, C</creator><creator>Raschel, K</creator><general>Institute of Mathematical Statistics (IMS)</general><scope>AKZ</scope><scope>GOX</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2863-8300</orcidid><orcidid>https://orcid.org/0000-0002-7132-7655</orcidid></search><sort><creationdate>2024</creationdate><title>On the stationary distribution of reflected Brownian motion in a wedge: differential properties</title><author>Bousquet-Mélou, M ; Price, A. Elvey ; Franceschi, S ; Hardouin, C ; Raschel, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1012-cf12d69e019423c8ef83f36e04f77b4c5a12f79fb2b04afca4400a06036feef23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorics</topic><topic>Mathematics</topic><topic>Mathematics - Probability</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bousquet-Mélou, M</creatorcontrib><creatorcontrib>Price, A. Elvey</creatorcontrib><creatorcontrib>Franceschi, S</creatorcontrib><creatorcontrib>Hardouin, C</creatorcontrib><creatorcontrib>Raschel, K</creatorcontrib><collection>arXiv Mathematics</collection><collection>arXiv.org</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electronic journal of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bousquet-Mélou, M</au><au>Price, A. Elvey</au><au>Franceschi, S</au><au>Hardouin, C</au><au>Raschel, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the stationary distribution of reflected Brownian motion in a wedge: differential properties</atitle><jtitle>Electronic journal of probability</jtitle><date>2024</date><risdate>2024</risdate><issn>1083-6489</issn><eissn>1083-6489</eissn><abstract>Electron. J. Probab. 30: 1-68 (2025) We consider the classical problem of determining the stationary distribution of the semimartingale reflected Brownian motion (SRBM) in a two-dimensional wedge. Under standard assumptions on the parameters of the model (opening of the wedge, angles of the reflections, drift), we study the algebraic and differential nature of the Laplace transform of this stationary distribution. We derive necessary and sufficient conditions for this Laplace transform to be rational, algebraic, differentially finite or more generally differentially algebraic. These conditions are explicit linear dependencies between the angles of the model. A complicated integral expression for this Laplace transform has recently been obtained by two authors of this paper. In the differentially algebraic case, we provide a simple, explicit integral-free expression in terms of a hypergeometric function. It specializes to earlier expressions in several classical cases: the skew-symmetric case, the orthogonal reflections case and the sum-of-exponential densities case (corresponding to the so-called Dieker-Moriarty conditions on the parameters). This paper thus closes, in a sense, the quest of all ``simple'' cases. To prove these results, we start from a functional equation that the Laplace transform satisfies, to which we apply tools from diverse horizons. To establish differential algebraicity, a key ingredient is Tutte's invariant approach, which originates in enumerative combinatorics. It allows us to express the Laplace transform (or its square) as a rational function of a certain canonical invariant, a hypergeometric function in our context. To establish differential transcendence, we turn the functional equation into a difference equation and apply Galoisian results on the nature of the solutions to such equations.</abstract><pub>Institute of Mathematical Statistics (IMS)</pub><doi>10.48550/arxiv.2101.01562</doi><orcidid>https://orcid.org/0000-0002-2863-8300</orcidid><orcidid>https://orcid.org/0000-0002-7132-7655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-6489
ispartof Electronic journal of probability, 2024
issn 1083-6489
1083-6489
language eng
recordid cdi_hal_primary_oai_HAL_hal_03098489v2
source Project Euclid Open Access; DOAJ Directory of Open Access Journals; arXiv.org; EZB-FREE-00999 freely available EZB journals
subjects Combinatorics
Mathematics
Mathematics - Probability
Probability
title On the stationary distribution of reflected Brownian motion in a wedge: differential properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A23%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_arxiv&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20stationary%20distribution%20of%20reflected%20Brownian%20motion%20in%20a%20wedge:%20differential%20properties&rft.jtitle=Electronic%20journal%20of%20probability&rft.au=Bousquet-M%C3%A9lou,%20M&rft.date=2024&rft.issn=1083-6489&rft.eissn=1083-6489&rft_id=info:doi/10.48550/arxiv.2101.01562&rft_dat=%3Chal_arxiv%3Eoai_HAL_hal_03098489v2%3C/hal_arxiv%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true