On the stationary distribution of reflected Brownian motion in a wedge: differential properties
Electron. J. Probab. 30: 1-68 (2025) We consider the classical problem of determining the stationary distribution of the semimartingale reflected Brownian motion (SRBM) in a two-dimensional wedge. Under standard assumptions on the parameters of the model (opening of the wedge, angles of the reflecti...
Gespeichert in:
Veröffentlicht in: | Electronic journal of probability 2024 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Electronic journal of probability |
container_volume | |
creator | Bousquet-Mélou, M Price, A. Elvey Franceschi, S Hardouin, C Raschel, K |
description | Electron. J. Probab. 30: 1-68 (2025) We consider the classical problem of determining the stationary distribution
of the semimartingale reflected Brownian motion (SRBM) in a two-dimensional
wedge. Under standard assumptions on the parameters of the model (opening of
the wedge, angles of the reflections, drift), we study the algebraic and
differential nature of the Laplace transform of this stationary distribution.
We derive necessary and sufficient conditions for this Laplace transform to be
rational, algebraic, differentially finite or more generally differentially
algebraic. These conditions are explicit linear dependencies between the angles
of the model.
A complicated integral expression for this Laplace transform has recently
been obtained by two authors of this paper. In the differentially algebraic
case, we provide a simple, explicit integral-free expression in terms of a
hypergeometric function. It specializes to earlier expressions in several
classical cases: the skew-symmetric case, the orthogonal reflections case and
the sum-of-exponential densities case (corresponding to the so-called
Dieker-Moriarty conditions on the parameters). This paper thus closes, in a
sense, the quest of all ``simple'' cases.
To prove these results, we start from a functional equation that the Laplace
transform satisfies, to which we apply tools from diverse horizons. To
establish differential algebraicity, a key ingredient is Tutte's invariant
approach, which originates in enumerative combinatorics. It allows us to
express the Laplace transform (or its square) as a rational function of a
certain canonical invariant, a hypergeometric function in our context. To
establish differential transcendence, we turn the functional equation into a
difference equation and apply Galoisian results on the nature of the solutions
to such equations. |
doi_str_mv | 10.48550/arxiv.2101.01562 |
format | Article |
fullrecord | <record><control><sourceid>hal_arxiv</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03098489v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03098489v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1012-cf12d69e019423c8ef83f36e04f77b4c5a12f79fb2b04afca4400a06036feef23</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAazwlkXK-BHXYVcqoEiVuoF1NEnG1ChNKse08PckLUKs5nVmNPcydi1gom2awh2GL7-bSAFiAiI18oSNBFiVGG2z03_5Obvoug8ACdrYEctXDY9r4l3E6NsGwzevfBeDLz6HmreOB3I1lZEq_hDafeOx4Zv2MPQNR76n6p3u-y3nKFATPdZ8G9otheipu2RnDuuOrn7jmL09Pb7OF8ly9fwyny0T7D-WSemErExGIDItVWnJWeWUIdBuOi10maKQbpq5Qhag0ZWoNQCCAWUckZNqzG6Pd9dY59vgN72SvEWfL2bLfOiBgsz2-ncDe3NkD5790YN3-cE79QPmzWRs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the stationary distribution of reflected Brownian motion in a wedge: differential properties</title><source>Project Euclid Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>arXiv.org</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bousquet-Mélou, M ; Price, A. Elvey ; Franceschi, S ; Hardouin, C ; Raschel, K</creator><creatorcontrib>Bousquet-Mélou, M ; Price, A. Elvey ; Franceschi, S ; Hardouin, C ; Raschel, K</creatorcontrib><description>Electron. J. Probab. 30: 1-68 (2025) We consider the classical problem of determining the stationary distribution
of the semimartingale reflected Brownian motion (SRBM) in a two-dimensional
wedge. Under standard assumptions on the parameters of the model (opening of
the wedge, angles of the reflections, drift), we study the algebraic and
differential nature of the Laplace transform of this stationary distribution.
We derive necessary and sufficient conditions for this Laplace transform to be
rational, algebraic, differentially finite or more generally differentially
algebraic. These conditions are explicit linear dependencies between the angles
of the model.
A complicated integral expression for this Laplace transform has recently
been obtained by two authors of this paper. In the differentially algebraic
case, we provide a simple, explicit integral-free expression in terms of a
hypergeometric function. It specializes to earlier expressions in several
classical cases: the skew-symmetric case, the orthogonal reflections case and
the sum-of-exponential densities case (corresponding to the so-called
Dieker-Moriarty conditions on the parameters). This paper thus closes, in a
sense, the quest of all ``simple'' cases.
To prove these results, we start from a functional equation that the Laplace
transform satisfies, to which we apply tools from diverse horizons. To
establish differential algebraicity, a key ingredient is Tutte's invariant
approach, which originates in enumerative combinatorics. It allows us to
express the Laplace transform (or its square) as a rational function of a
certain canonical invariant, a hypergeometric function in our context. To
establish differential transcendence, we turn the functional equation into a
difference equation and apply Galoisian results on the nature of the solutions
to such equations.</description><identifier>ISSN: 1083-6489</identifier><identifier>EISSN: 1083-6489</identifier><identifier>DOI: 10.48550/arxiv.2101.01562</identifier><language>eng</language><publisher>Institute of Mathematical Statistics (IMS)</publisher><subject>Combinatorics ; Mathematics ; Mathematics - Probability ; Probability</subject><ispartof>Electronic journal of probability, 2024</ispartof><rights>http://arxiv.org/licenses/nonexclusive-distrib/1.0</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2863-8300 ; 0000-0002-7132-7655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>228,230,314,776,780,860,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://doi.org/10.48550/arXiv.2101.01562$$DView paper in arXiv$$Hfree_for_read</backlink><backlink>$$Uhttps://doi.org/10.1214/24-EJP1257$$DView published paper (Access to full text may be restricted)$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03098489$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bousquet-Mélou, M</creatorcontrib><creatorcontrib>Price, A. Elvey</creatorcontrib><creatorcontrib>Franceschi, S</creatorcontrib><creatorcontrib>Hardouin, C</creatorcontrib><creatorcontrib>Raschel, K</creatorcontrib><title>On the stationary distribution of reflected Brownian motion in a wedge: differential properties</title><title>Electronic journal of probability</title><description>Electron. J. Probab. 30: 1-68 (2025) We consider the classical problem of determining the stationary distribution
of the semimartingale reflected Brownian motion (SRBM) in a two-dimensional
wedge. Under standard assumptions on the parameters of the model (opening of
the wedge, angles of the reflections, drift), we study the algebraic and
differential nature of the Laplace transform of this stationary distribution.
We derive necessary and sufficient conditions for this Laplace transform to be
rational, algebraic, differentially finite or more generally differentially
algebraic. These conditions are explicit linear dependencies between the angles
of the model.
A complicated integral expression for this Laplace transform has recently
been obtained by two authors of this paper. In the differentially algebraic
case, we provide a simple, explicit integral-free expression in terms of a
hypergeometric function. It specializes to earlier expressions in several
classical cases: the skew-symmetric case, the orthogonal reflections case and
the sum-of-exponential densities case (corresponding to the so-called
Dieker-Moriarty conditions on the parameters). This paper thus closes, in a
sense, the quest of all ``simple'' cases.
To prove these results, we start from a functional equation that the Laplace
transform satisfies, to which we apply tools from diverse horizons. To
establish differential algebraicity, a key ingredient is Tutte's invariant
approach, which originates in enumerative combinatorics. It allows us to
express the Laplace transform (or its square) as a rational function of a
certain canonical invariant, a hypergeometric function in our context. To
establish differential transcendence, we turn the functional equation into a
difference equation and apply Galoisian results on the nature of the solutions
to such equations.</description><subject>Combinatorics</subject><subject>Mathematics</subject><subject>Mathematics - Probability</subject><subject>Probability</subject><issn>1083-6489</issn><issn>1083-6489</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>GOX</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAazwlkXK-BHXYVcqoEiVuoF1NEnG1ChNKse08PckLUKs5nVmNPcydi1gom2awh2GL7-bSAFiAiI18oSNBFiVGG2z03_5Obvoug8ACdrYEctXDY9r4l3E6NsGwzevfBeDLz6HmreOB3I1lZEq_hDafeOx4Zv2MPQNR76n6p3u-y3nKFATPdZ8G9otheipu2RnDuuOrn7jmL09Pb7OF8ly9fwyny0T7D-WSemErExGIDItVWnJWeWUIdBuOi10maKQbpq5Qhag0ZWoNQCCAWUckZNqzG6Pd9dY59vgN72SvEWfL2bLfOiBgsz2-ncDe3NkD5790YN3-cE79QPmzWRs</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bousquet-Mélou, M</creator><creator>Price, A. Elvey</creator><creator>Franceschi, S</creator><creator>Hardouin, C</creator><creator>Raschel, K</creator><general>Institute of Mathematical Statistics (IMS)</general><scope>AKZ</scope><scope>GOX</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2863-8300</orcidid><orcidid>https://orcid.org/0000-0002-7132-7655</orcidid></search><sort><creationdate>2024</creationdate><title>On the stationary distribution of reflected Brownian motion in a wedge: differential properties</title><author>Bousquet-Mélou, M ; Price, A. Elvey ; Franceschi, S ; Hardouin, C ; Raschel, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1012-cf12d69e019423c8ef83f36e04f77b4c5a12f79fb2b04afca4400a06036feef23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorics</topic><topic>Mathematics</topic><topic>Mathematics - Probability</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bousquet-Mélou, M</creatorcontrib><creatorcontrib>Price, A. Elvey</creatorcontrib><creatorcontrib>Franceschi, S</creatorcontrib><creatorcontrib>Hardouin, C</creatorcontrib><creatorcontrib>Raschel, K</creatorcontrib><collection>arXiv Mathematics</collection><collection>arXiv.org</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electronic journal of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bousquet-Mélou, M</au><au>Price, A. Elvey</au><au>Franceschi, S</au><au>Hardouin, C</au><au>Raschel, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the stationary distribution of reflected Brownian motion in a wedge: differential properties</atitle><jtitle>Electronic journal of probability</jtitle><date>2024</date><risdate>2024</risdate><issn>1083-6489</issn><eissn>1083-6489</eissn><abstract>Electron. J. Probab. 30: 1-68 (2025) We consider the classical problem of determining the stationary distribution
of the semimartingale reflected Brownian motion (SRBM) in a two-dimensional
wedge. Under standard assumptions on the parameters of the model (opening of
the wedge, angles of the reflections, drift), we study the algebraic and
differential nature of the Laplace transform of this stationary distribution.
We derive necessary and sufficient conditions for this Laplace transform to be
rational, algebraic, differentially finite or more generally differentially
algebraic. These conditions are explicit linear dependencies between the angles
of the model.
A complicated integral expression for this Laplace transform has recently
been obtained by two authors of this paper. In the differentially algebraic
case, we provide a simple, explicit integral-free expression in terms of a
hypergeometric function. It specializes to earlier expressions in several
classical cases: the skew-symmetric case, the orthogonal reflections case and
the sum-of-exponential densities case (corresponding to the so-called
Dieker-Moriarty conditions on the parameters). This paper thus closes, in a
sense, the quest of all ``simple'' cases.
To prove these results, we start from a functional equation that the Laplace
transform satisfies, to which we apply tools from diverse horizons. To
establish differential algebraicity, a key ingredient is Tutte's invariant
approach, which originates in enumerative combinatorics. It allows us to
express the Laplace transform (or its square) as a rational function of a
certain canonical invariant, a hypergeometric function in our context. To
establish differential transcendence, we turn the functional equation into a
difference equation and apply Galoisian results on the nature of the solutions
to such equations.</abstract><pub>Institute of Mathematical Statistics (IMS)</pub><doi>10.48550/arxiv.2101.01562</doi><orcidid>https://orcid.org/0000-0002-2863-8300</orcidid><orcidid>https://orcid.org/0000-0002-7132-7655</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-6489 |
ispartof | Electronic journal of probability, 2024 |
issn | 1083-6489 1083-6489 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03098489v2 |
source | Project Euclid Open Access; DOAJ Directory of Open Access Journals; arXiv.org; EZB-FREE-00999 freely available EZB journals |
subjects | Combinatorics Mathematics Mathematics - Probability Probability |
title | On the stationary distribution of reflected Brownian motion in a wedge: differential properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A23%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_arxiv&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20stationary%20distribution%20of%20reflected%20Brownian%20motion%20in%20a%20wedge:%20differential%20properties&rft.jtitle=Electronic%20journal%20of%20probability&rft.au=Bousquet-M%C3%A9lou,%20M&rft.date=2024&rft.issn=1083-6489&rft.eissn=1083-6489&rft_id=info:doi/10.48550/arxiv.2101.01562&rft_dat=%3Chal_arxiv%3Eoai_HAL_hal_03098489v2%3C/hal_arxiv%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |