On the structure of the graded algebra associated to a valuation

The main goal of this paper is to study the structure of the graded algebra associated to a valuation. More specifically, we prove that the associated graded algebra grv(R) of a subring (R,m) of a valuation ring Ov, for which Kv:=Ov/mv=R/m, is isomorphic to Kv[tv(R)], where the multiplication is giv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra 2020-10, Vol.560, p.667-679
Hauptverfasser: Barnabé, M.S., Novacoski, J., Spivakovsky, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 679
container_issue
container_start_page 667
container_title Journal of algebra
container_volume 560
creator Barnabé, M.S.
Novacoski, J.
Spivakovsky, M.
description The main goal of this paper is to study the structure of the graded algebra associated to a valuation. More specifically, we prove that the associated graded algebra grv(R) of a subring (R,m) of a valuation ring Ov, for which Kv:=Ov/mv=R/m, is isomorphic to Kv[tv(R)], where the multiplication is given by a twisting. We show that this twisted multiplication can be chosen to be the usual one in the cases where the value group is free or the residue field is closed by radicals. We also present an example that shows that the isomorphism (with the trivial twisting) does not have to exist.
doi_str_mv 10.1016/j.jalgebra.2020.06.003
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03096236v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021869320303021</els_id><sourcerecordid>oai_HAL_hal_03096236v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-9a568bb3a00020459b0a934e8f8e005383a333ad27ddad927c92aa036ce953353</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWP98Bdmrh10nmd10c2spaoVCLwrewmySbbPUriRpwW_v1lavngYe7z3e_Bi741Bw4PKhKzrarFwTqBAgoABZAOAZG3FQkAsp38_ZCEDwvJYKL9lVjB0A51VZj9hkuc3S2mUxhZ1Ju-Cyvv0RVoGss9mpOaMYe-MpDVLqM8r2tNlR8v32hl20tInu9nSv2dvT4-tsni-Wzy-z6SI3qMqUK6pk3TRIMCyBslINkMLS1W3tACqskRCRrBhbS1aJsVGCCFAapyrECq_Z_bF3TRv9GfwHhS_dk9fz6UIfNEBQUqDc88Erj14T-hiDa_8CHPSBme70LzN9YKZB6oHZEJwcg274ZO9d0NF4tzXO-uBM0rb3_1V8A07Tdsw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the structure of the graded algebra associated to a valuation</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Barnabé, M.S. ; Novacoski, J. ; Spivakovsky, M.</creator><creatorcontrib>Barnabé, M.S. ; Novacoski, J. ; Spivakovsky, M.</creatorcontrib><description>The main goal of this paper is to study the structure of the graded algebra associated to a valuation. More specifically, we prove that the associated graded algebra grv(R) of a subring (R,m) of a valuation ring Ov, for which Kv:=Ov/mv=R/m, is isomorphic to Kv[tv(R)], where the multiplication is given by a twisting. We show that this twisted multiplication can be chosen to be the usual one in the cases where the value group is free or the residue field is closed by radicals. We also present an example that shows that the isomorphism (with the trivial twisting) does not have to exist.</description><identifier>ISSN: 0021-8693</identifier><identifier>EISSN: 1090-266X</identifier><identifier>DOI: 10.1016/j.jalgebra.2020.06.003</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Associated graded ring ; Mathematics ; Semigroup algebra ; Valuations</subject><ispartof>Journal of algebra, 2020-10, Vol.560, p.667-679</ispartof><rights>2020 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-9a568bb3a00020459b0a934e8f8e005383a333ad27ddad927c92aa036ce953353</citedby><cites>FETCH-LOGICAL-c394t-9a568bb3a00020459b0a934e8f8e005383a333ad27ddad927c92aa036ce953353</cites><orcidid>0000-0003-4087-0716 ; 0000-0002-5950-1788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jalgebra.2020.06.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03096236$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barnabé, M.S.</creatorcontrib><creatorcontrib>Novacoski, J.</creatorcontrib><creatorcontrib>Spivakovsky, M.</creatorcontrib><title>On the structure of the graded algebra associated to a valuation</title><title>Journal of algebra</title><description>The main goal of this paper is to study the structure of the graded algebra associated to a valuation. More specifically, we prove that the associated graded algebra grv(R) of a subring (R,m) of a valuation ring Ov, for which Kv:=Ov/mv=R/m, is isomorphic to Kv[tv(R)], where the multiplication is given by a twisting. We show that this twisted multiplication can be chosen to be the usual one in the cases where the value group is free or the residue field is closed by radicals. We also present an example that shows that the isomorphism (with the trivial twisting) does not have to exist.</description><subject>Associated graded ring</subject><subject>Mathematics</subject><subject>Semigroup algebra</subject><subject>Valuations</subject><issn>0021-8693</issn><issn>1090-266X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWP98Bdmrh10nmd10c2spaoVCLwrewmySbbPUriRpwW_v1lavngYe7z3e_Bi741Bw4PKhKzrarFwTqBAgoABZAOAZG3FQkAsp38_ZCEDwvJYKL9lVjB0A51VZj9hkuc3S2mUxhZ1Ju-Cyvv0RVoGss9mpOaMYe-MpDVLqM8r2tNlR8v32hl20tInu9nSv2dvT4-tsni-Wzy-z6SI3qMqUK6pk3TRIMCyBslINkMLS1W3tACqskRCRrBhbS1aJsVGCCFAapyrECq_Z_bF3TRv9GfwHhS_dk9fz6UIfNEBQUqDc88Erj14T-hiDa_8CHPSBme70LzN9YKZB6oHZEJwcg274ZO9d0NF4tzXO-uBM0rb3_1V8A07Tdsw</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Barnabé, M.S.</creator><creator>Novacoski, J.</creator><creator>Spivakovsky, M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4087-0716</orcidid><orcidid>https://orcid.org/0000-0002-5950-1788</orcidid></search><sort><creationdate>20201015</creationdate><title>On the structure of the graded algebra associated to a valuation</title><author>Barnabé, M.S. ; Novacoski, J. ; Spivakovsky, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-9a568bb3a00020459b0a934e8f8e005383a333ad27ddad927c92aa036ce953353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Associated graded ring</topic><topic>Mathematics</topic><topic>Semigroup algebra</topic><topic>Valuations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barnabé, M.S.</creatorcontrib><creatorcontrib>Novacoski, J.</creatorcontrib><creatorcontrib>Spivakovsky, M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnabé, M.S.</au><au>Novacoski, J.</au><au>Spivakovsky, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the structure of the graded algebra associated to a valuation</atitle><jtitle>Journal of algebra</jtitle><date>2020-10-15</date><risdate>2020</risdate><volume>560</volume><spage>667</spage><epage>679</epage><pages>667-679</pages><issn>0021-8693</issn><eissn>1090-266X</eissn><abstract>The main goal of this paper is to study the structure of the graded algebra associated to a valuation. More specifically, we prove that the associated graded algebra grv(R) of a subring (R,m) of a valuation ring Ov, for which Kv:=Ov/mv=R/m, is isomorphic to Kv[tv(R)], where the multiplication is given by a twisting. We show that this twisted multiplication can be chosen to be the usual one in the cases where the value group is free or the residue field is closed by radicals. We also present an example that shows that the isomorphism (with the trivial twisting) does not have to exist.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jalgebra.2020.06.003</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4087-0716</orcidid><orcidid>https://orcid.org/0000-0002-5950-1788</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8693
ispartof Journal of algebra, 2020-10, Vol.560, p.667-679
issn 0021-8693
1090-266X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03096236v1
source Elsevier ScienceDirect Journals Complete - AutoHoldings; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Associated graded ring
Mathematics
Semigroup algebra
Valuations
title On the structure of the graded algebra associated to a valuation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A25%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20structure%20of%20the%20graded%20algebra%20associated%20to%20a%20valuation&rft.jtitle=Journal%20of%20algebra&rft.au=Barnab%C3%A9,%20M.S.&rft.date=2020-10-15&rft.volume=560&rft.spage=667&rft.epage=679&rft.pages=667-679&rft.issn=0021-8693&rft.eissn=1090-266X&rft_id=info:doi/10.1016/j.jalgebra.2020.06.003&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03096236v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021869320303021&rfr_iscdi=true