Velocity distributions, dispersion and stretching in three-dimensional porous media
Using index matching and particle tracking, we measure the three-dimensional velocity field in an isotropic porous medium composed of randomly packed solid spheres. This high-resolution experimental dataset provides new insights into the dynamics of dispersion and stretching in porous media. Dynamic...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2020-05, Vol.891, Article A16 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 891 |
creator | Souzy, M. Lhuissier, H. Méheust, Y. Le Borgne, T. Metzger, B. |
description | Using index matching and particle tracking, we measure the three-dimensional velocity field in an isotropic porous medium composed of randomly packed solid spheres. This high-resolution experimental dataset provides new insights into the dynamics of dispersion and stretching in porous media. Dynamic-range velocity measurements indicate that the distribution of the velocity magnitude,
$U$
, is flat at low velocity (probability density function
$(U)\propto U^{0}$
). While such a distribution should lead to a persistent anomalous dispersion process for advected non-diffusive point particles, we show that the dispersion of non-diffusive tracers nonetheless becomes Fickian beyond a time set by the smallest effective velocity of the tracers. We derive expressions for the onset time of the Fickian regime and the longitudinal and transverse dispersion coefficients as a function of the velocity field properties. The experimental velocity field is also used to study, by numerical advection, the stretching histories of fluid material lines. The mean and the variance of the line elongations are found to grow exponentially in time and the distribution of elongation is log-normal. These results confirm the chaotic nature of advection within three-dimensional porous media. By providing the laws of dispersion and stretching, the present study opens the way to a complete description of mixing in porous media. |
doi_str_mv | 10.1017/jfm.2020.113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03091785v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2381565453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-f3a745b91338050acaf0b01ac30b30ccc4b7e0b65fbe12a329efe97f8c6fd8503</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs3f8CCJ6FbZ5LNZvdYilqh4MGPa8hmE5uyHzXZFfrvzVLxNLwzD8PMQ8gtwhIBxcPetksKNCZkZ2SGWV6mIs_4OZkBUJoiUrgkVyHsAZBBKWbk7dM0vXbDMaldGLyrxsH1XVhM8WB8iCFRXZ3EmRn0znVfieuSYeeNSWvXmm4iVJMcet-PIWlN7dQ1ubCqCebmr87Jx9Pj-3qTbl-fX9arbaozgUNqmRIZr0pkrAAOSisLFaDSDCoGWuusEgaqnNvKIFWMlsaaUthC57YuOLA5uT_t3alGHrxrlT_KXjm5WW3l1IP4I4qC_2Bk707swfffowmD3Pejj5cHSVmBPOcZZ5FanCjt-xC8sf9rEeSkWEbFclIso2L2C-jWb24</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2381565453</pqid></control><display><type>article</type><title>Velocity distributions, dispersion and stretching in three-dimensional porous media</title><source>Cambridge University Press Journals Complete</source><creator>Souzy, M. ; Lhuissier, H. ; Méheust, Y. ; Le Borgne, T. ; Metzger, B.</creator><creatorcontrib>Souzy, M. ; Lhuissier, H. ; Méheust, Y. ; Le Borgne, T. ; Metzger, B.</creatorcontrib><description>Using index matching and particle tracking, we measure the three-dimensional velocity field in an isotropic porous medium composed of randomly packed solid spheres. This high-resolution experimental dataset provides new insights into the dynamics of dispersion and stretching in porous media. Dynamic-range velocity measurements indicate that the distribution of the velocity magnitude,
$U$
, is flat at low velocity (probability density function
$(U)\propto U^{0}$
). While such a distribution should lead to a persistent anomalous dispersion process for advected non-diffusive point particles, we show that the dispersion of non-diffusive tracers nonetheless becomes Fickian beyond a time set by the smallest effective velocity of the tracers. We derive expressions for the onset time of the Fickian regime and the longitudinal and transverse dispersion coefficients as a function of the velocity field properties. The experimental velocity field is also used to study, by numerical advection, the stretching histories of fluid material lines. The mean and the variance of the line elongations are found to grow exponentially in time and the distribution of elongation is log-normal. These results confirm the chaotic nature of advection within three-dimensional porous media. By providing the laws of dispersion and stretching, the present study opens the way to a complete description of mixing in porous media.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.113</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Advection ; Cameras ; Coefficients ; Dispersion ; Distribution ; Effective velocity ; Elongation ; Fluid mechanics ; Investigations ; Lasers ; Measurement techniques ; Mechanics ; Packaging ; Particle tracking ; Physics ; Porous media ; Probability density functions ; Probability theory ; Reynolds number ; Stretching ; Tracers ; Velocity ; Velocity distribution</subject><ispartof>Journal of fluid mechanics, 2020-05, Vol.891, Article A16</ispartof><rights>Copyright Cambridge University Press May 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-f3a745b91338050acaf0b01ac30b30ccc4b7e0b65fbe12a329efe97f8c6fd8503</citedby><cites>FETCH-LOGICAL-c471t-f3a745b91338050acaf0b01ac30b30ccc4b7e0b65fbe12a329efe97f8c6fd8503</cites><orcidid>0000-0002-8586-8153 ; 0000-0001-9266-9139 ; 0000-0003-1284-3251 ; 0000-0003-3031-6543 ; 0000-0002-4835-8971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03091785$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Souzy, M.</creatorcontrib><creatorcontrib>Lhuissier, H.</creatorcontrib><creatorcontrib>Méheust, Y.</creatorcontrib><creatorcontrib>Le Borgne, T.</creatorcontrib><creatorcontrib>Metzger, B.</creatorcontrib><title>Velocity distributions, dispersion and stretching in three-dimensional porous media</title><title>Journal of fluid mechanics</title><description>Using index matching and particle tracking, we measure the three-dimensional velocity field in an isotropic porous medium composed of randomly packed solid spheres. This high-resolution experimental dataset provides new insights into the dynamics of dispersion and stretching in porous media. Dynamic-range velocity measurements indicate that the distribution of the velocity magnitude,
$U$
, is flat at low velocity (probability density function
$(U)\propto U^{0}$
). While such a distribution should lead to a persistent anomalous dispersion process for advected non-diffusive point particles, we show that the dispersion of non-diffusive tracers nonetheless becomes Fickian beyond a time set by the smallest effective velocity of the tracers. We derive expressions for the onset time of the Fickian regime and the longitudinal and transverse dispersion coefficients as a function of the velocity field properties. The experimental velocity field is also used to study, by numerical advection, the stretching histories of fluid material lines. The mean and the variance of the line elongations are found to grow exponentially in time and the distribution of elongation is log-normal. These results confirm the chaotic nature of advection within three-dimensional porous media. By providing the laws of dispersion and stretching, the present study opens the way to a complete description of mixing in porous media.</description><subject>Advection</subject><subject>Cameras</subject><subject>Coefficients</subject><subject>Dispersion</subject><subject>Distribution</subject><subject>Effective velocity</subject><subject>Elongation</subject><subject>Fluid mechanics</subject><subject>Investigations</subject><subject>Lasers</subject><subject>Measurement techniques</subject><subject>Mechanics</subject><subject>Packaging</subject><subject>Particle tracking</subject><subject>Physics</subject><subject>Porous media</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>Reynolds number</subject><subject>Stretching</subject><subject>Tracers</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LAzEQhoMoWKs3f8CCJ6FbZ5LNZvdYilqh4MGPa8hmE5uyHzXZFfrvzVLxNLwzD8PMQ8gtwhIBxcPetksKNCZkZ2SGWV6mIs_4OZkBUJoiUrgkVyHsAZBBKWbk7dM0vXbDMaldGLyrxsH1XVhM8WB8iCFRXZ3EmRn0znVfieuSYeeNSWvXmm4iVJMcet-PIWlN7dQ1ubCqCebmr87Jx9Pj-3qTbl-fX9arbaozgUNqmRIZr0pkrAAOSisLFaDSDCoGWuusEgaqnNvKIFWMlsaaUthC57YuOLA5uT_t3alGHrxrlT_KXjm5WW3l1IP4I4qC_2Bk707swfffowmD3Pejj5cHSVmBPOcZZ5FanCjt-xC8sf9rEeSkWEbFclIso2L2C-jWb24</recordid><startdate>20200525</startdate><enddate>20200525</enddate><creator>Souzy, M.</creator><creator>Lhuissier, H.</creator><creator>Méheust, Y.</creator><creator>Le Borgne, T.</creator><creator>Metzger, B.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8586-8153</orcidid><orcidid>https://orcid.org/0000-0001-9266-9139</orcidid><orcidid>https://orcid.org/0000-0003-1284-3251</orcidid><orcidid>https://orcid.org/0000-0003-3031-6543</orcidid><orcidid>https://orcid.org/0000-0002-4835-8971</orcidid></search><sort><creationdate>20200525</creationdate><title>Velocity distributions, dispersion and stretching in three-dimensional porous media</title><author>Souzy, M. ; Lhuissier, H. ; Méheust, Y. ; Le Borgne, T. ; Metzger, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-f3a745b91338050acaf0b01ac30b30ccc4b7e0b65fbe12a329efe97f8c6fd8503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advection</topic><topic>Cameras</topic><topic>Coefficients</topic><topic>Dispersion</topic><topic>Distribution</topic><topic>Effective velocity</topic><topic>Elongation</topic><topic>Fluid mechanics</topic><topic>Investigations</topic><topic>Lasers</topic><topic>Measurement techniques</topic><topic>Mechanics</topic><topic>Packaging</topic><topic>Particle tracking</topic><topic>Physics</topic><topic>Porous media</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>Reynolds number</topic><topic>Stretching</topic><topic>Tracers</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Souzy, M.</creatorcontrib><creatorcontrib>Lhuissier, H.</creatorcontrib><creatorcontrib>Méheust, Y.</creatorcontrib><creatorcontrib>Le Borgne, T.</creatorcontrib><creatorcontrib>Metzger, B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souzy, M.</au><au>Lhuissier, H.</au><au>Méheust, Y.</au><au>Le Borgne, T.</au><au>Metzger, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Velocity distributions, dispersion and stretching in three-dimensional porous media</atitle><jtitle>Journal of fluid mechanics</jtitle><date>2020-05-25</date><risdate>2020</risdate><volume>891</volume><artnum>A16</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Using index matching and particle tracking, we measure the three-dimensional velocity field in an isotropic porous medium composed of randomly packed solid spheres. This high-resolution experimental dataset provides new insights into the dynamics of dispersion and stretching in porous media. Dynamic-range velocity measurements indicate that the distribution of the velocity magnitude,
$U$
, is flat at low velocity (probability density function
$(U)\propto U^{0}$
). While such a distribution should lead to a persistent anomalous dispersion process for advected non-diffusive point particles, we show that the dispersion of non-diffusive tracers nonetheless becomes Fickian beyond a time set by the smallest effective velocity of the tracers. We derive expressions for the onset time of the Fickian regime and the longitudinal and transverse dispersion coefficients as a function of the velocity field properties. The experimental velocity field is also used to study, by numerical advection, the stretching histories of fluid material lines. The mean and the variance of the line elongations are found to grow exponentially in time and the distribution of elongation is log-normal. These results confirm the chaotic nature of advection within three-dimensional porous media. By providing the laws of dispersion and stretching, the present study opens the way to a complete description of mixing in porous media.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.113</doi><orcidid>https://orcid.org/0000-0002-8586-8153</orcidid><orcidid>https://orcid.org/0000-0001-9266-9139</orcidid><orcidid>https://orcid.org/0000-0003-1284-3251</orcidid><orcidid>https://orcid.org/0000-0003-3031-6543</orcidid><orcidid>https://orcid.org/0000-0002-4835-8971</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2020-05, Vol.891, Article A16 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03091785v1 |
source | Cambridge University Press Journals Complete |
subjects | Advection Cameras Coefficients Dispersion Distribution Effective velocity Elongation Fluid mechanics Investigations Lasers Measurement techniques Mechanics Packaging Particle tracking Physics Porous media Probability density functions Probability theory Reynolds number Stretching Tracers Velocity Velocity distribution |
title | Velocity distributions, dispersion and stretching in three-dimensional porous media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Velocity%20distributions,%20dispersion%20and%20stretching%20in%20three-dimensional%20porous%20media&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Souzy,%20M.&rft.date=2020-05-25&rft.volume=891&rft.artnum=A16&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.113&rft_dat=%3Cproquest_hal_p%3E2381565453%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2381565453&rft_id=info:pmid/&rfr_iscdi=true |